

Jo	urnal of the Japan I	Petroleum Institute
		The Japan Petroleum Institute
Available Issues In	structions to Authors Japanese	>> Publisher Site
Author:	<u>ADVANCED</u> Volu	ime Page
Keyword:	Search	Go
	Add to Favorite / Citation Favor Public Public	to rite cations Register My J-STAGE HELP

TOP > **Available Issues** > **Table of Contents** > **Abstract**

ONLINE ISSN: 1349-273X PRINT ISSN: 1346-8804

Journal of the Japan Petroleum Institute

Vol. 47 (2004), No. 1 pp.37-43

[PDF (423K)] [References]

Hydrothermal Cracking of Furfural Extract into Middle Distillate Using Ni/Silica-alumina and Ni/Molecular Sieve Hybrid Catalyst

S. K. Saha¹⁾, G. K. Biswas¹⁾, C. R. Lahiri²⁾ and D. Biswas²⁾

- 1) Chemical Engineering Dept., Jadavpur University
- 2) Chemical Technology Dept., Calcutta University

(Received: May 8, 2003)

Heavy residual products in petroleum refineries are a useful source of hydrocarbons, so are a potential substrate for producing middle distillates by hydrocracking technology to increase the supply of transportation fuels. This study used highly refractory furfural extract of lube oil containing 96.0 vol% aromatics with 4.63 wt% S, and 0.15 wt% N with a pour point of +30°C to produce middle distillates through catalytic hydrothermal cracking. The effect of various parameters such as temperature, hydrogen partial pressure, residence time and amount of catalyst were studied with 250 g feed and 25 g nickel-loaded catalyst of 20: 80 ratio of silica-alumina (A) and molecular sieves 13X (Z) as cracking site and nickel metal serves as hydrogenation site. The maximum yield of middle distillates was 26.4 wt% at temperature 400°C, pressure 10.0 MPa, initial hydrogen partial pressure 9.0 MPa, and residence time 15 min.

Keywords: Furfural extract, Hybrid catalyst, Silica-alumina, Molecular sieve 13X, Middle distillate, Hydrothermal cracking

[PDF (423K)] [References]

Download Meta of Article[Help]

RIS

BibTeX

S. K. Saha, G. K. Biswas, C. R. Lahiri and D. Biswas, Journal of the Japan Petroleum Institute, Vol. 47, No. 1, p.37 (2004).

doi:10.1627/jpi.47.37 JOI JST.JSTAGE/jpi/47.37

Copyright (c) 2004 by The Japan Petroleum Institute

Japan Science and Technology Information Aggregator, Electronic

