

Vol. 49 (2006), No. 4 pp.168-176

[PDF (2132K)] [References]

Development of Visible Light Sensitive TiO_2 Photocatalysts and Their Sensitization Using Fe³⁺ Ions

Teruhisa Ohno¹⁾

1) Dept. of Materials Science, Faculty of Engineering, Kyushu Institute of Technology

(Received: February 10, 2006)

Titanium dioxide photocatalysts are promising substrates for photodegradation of pollutants in water and air, but show photocatalytic activities only under UV light. To utilize a wider range of incident wavelengths such as solar light, development of photocatalysts active under visible light is very important. Chemically modified titanium dioxide photocatalysts were prepared containing anatase phase with S (S^{4+}) substituted for some lattice Ti atoms or N substituted for some lattice O atoms. These catalysts showed strong absorption of visible light and high activities for degradation of 2-propanol in aqueous solution and partial oxidation of adamantane under irradiation at wavelengths longer than 440 nm. The oxidation states of the S and N atoms incorporated into the TiO₂ particles were determined to be mainly S^{4+} and N^{3-} from XPS spectra, respectively. The photocatalytic activities of S- or N-doped TiO₂ photocatalysts with adsorbed Fe^{3+} ions were markedly improved for oxidation of 2-propanol compared to those of S- or N-doped TiO_2 without Fe^{3+} ions under a wide range of incident wavelengths, including UV light and visible light. The photocatalytic activity reached maximum with 0.90 wt% Fe³⁺ ions adsorbed on S-doped TiO₂, and 0.36 wt% Fe³⁺ ions on N-doped TiO₂. Furthermore, redox treatment of S- or N-doped TiO₂ photocatalysts with adsorbed Fe³⁺ ions by reduction with NaBH₄ followed by air oxidation resulted in further improvements in photocatalytic activities. In this case, the optimum amounts of Fe³⁺ were 2.81 and 0.88 wt% on the surfaces of S- and N-doped TiO₂ photocatalysts, respectively.

Keywords: Photocatalyst, Titanium dioxide, Visible light, Sulfur-doped titanium dioxide, Nitrogen-doped titanium dioxide, Iron (III) cation

[PDF (2132K)] [References]

Download Meta of Article[Help] RIS BibTeX

To cite this article: Teruhisa Ohno, Journal of the Japan Petroleum Institute, Vol. 49, No. 4, p.168 (2006).

doi:10.1627/jpi.49.168 JOI JST.JSTAGE/jpi/49.168

Copyright (c) 2006 by The Japan Petroleum Institute

Japan Science and Technology Information Aggregator, Electronic