中国有色金属学报

中国有色金属学报(英文版)

中国科学技术协会

🍾 论文摘要

中国有色金属学报

ZHONGGUO YOUSEJINSHUXUEBAO XUEBAO

第19卷

第12期

(总第129期)

2009年12月

[PDF全文下载] [全文在线阅读]

文章编号: 1004-0609(2009)12-2243-08

高铁三水铝石型铝土矿烧结过程中氧化铝反应热力学

朱忠平,姜涛,李光辉,黄柱成

(中南大学 资源加工与生物工程学院,长沙 410083)

要: 研究了高铁三水铝石型铝土矿烧结过程中AI $_2$ 0 $_3$ 与CaC0 $_3$ 、CaO、SiO $_2$ 及FeO反应的热力学规律。结果表明:在1 473~1 673 K温度下, Al_2O_3 比 Fe_2O_3 更易与 $CaCO_3$ 反应; Al_2O_3 与铁酸钙($2CaO\cdot Fe_2O_3$ 和 $CaO\cdot Fe_2O_3$)反应不能生成 $3CaO\cdot Al_2O_3$,当烧结温度大于1 000 K时,可以与 2Ca0·Fe $_2$ 0 $_3$ 反应生成12Ca0·7Al $_2$ 0 $_3$;Si $_2$ 比Al $_2$ 0 $_3$ 更易与Ca0结合,Al $_2$ 0 $_3$ 与Si $_2$ 直接反应生成硅酸铝的可能性较小;当烧结温度为1 473~1 673 K 时,除CaO·2AI₂O₃和CaO·AI₂O₃不能向3CaO·SiO₂转变外,其余铝酸钙均可在SiO₂的作用下向硅酸钙转变; 2CaO·AI₂O₃· SiO₂是CaO、AI₂O₃和SiO₂三 者直接反应的产物,不能由硅酸钙和铝酸钙相互反应生成; CaO、Fe₂O₃、AI₂O₃和SiO₂四元矿物存在时,烧结过程优先生成2CaO·AI₂O₃·SiO₂和 4Ca0· Al₂0₃· Fe₂0₃,这与烧结实验结果相符。

关键字: 三水铝石; 铝土矿; 铁矿石; 烧结; 氧化铝

Thermodynamics of reaction of alumina during sintering process of high-iron gibbsite-type bauxite

ZHU Zhong-ping, JIANG Tao, LI Guang-hui, HUANG Zhu-cheng

(School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China)

Abstract: The thermodynamics of the reactions of alumina(Al₂O₃) with CaCO₃, CaO, SiO₂ and FeO in the sintering process of high-iron gibbsite-type bauxite was investigated. The results show that alumina reacts with calcium carbonate much easier than ferri oxide(Fe₂O₃) at the industrial sintering temperature of 1 473–1 673 K. Alumina can not react with calcium ferrites(2CaO·Fe₂O₃ and CaO·Fe₂O₃) to form 3CaO·Al₂O₃, but when temperature is over 1 000 K alumina reacts with 2CaO·Fe₂O₃ to form 12CaO·7Al₂O₃. SiO₂ reacts with CaO much easier than Al₂O₃. The possibility of alumina silicate from direct reaction of Al₂O₃ with SiO₂ is little. Except for CaO·2Al₂O₃ and CaO·Al₂O₃, the other calcium aluminates can transform into calcium silicate by reacting with SiO₂. Gehlenite(2CaO·Al₂O₃·SiO₂) can not be formed from the reaction of

calcium silicate($CaO \cdot SiO_2$) with calcium aluminate($CaO \cdot Al_2O_3$), but it can be directly formed from the reaction of CaO, Al_2O_3 and SiO_2 . When CaO, Fe_2O_3 , Al_2O_3 and SiO_2 coexist in the sintering process, they are more likely to form ternary compound $2CaO \cdot Al_2O_3 \cdot SiO_2$ and $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$, which is consistent with the sintering results in laboratory.

Key words: gibbsite; bauxite; iron ore; sintering; alumina

版权所有: 《中国有色金属学报》编辑部 湘ICP备09001153号

地 址:湖南省长沙市岳麓山中南大学内 邮编: 410083

电话: 0731-88876765, 88877197, 88830410 传真: 0731-88877197

电子邮箱: f-ysxb@mail.csu.edu.cn