

OPTICA APPLICATA

A quarterly of the Institute of Physics, Wroclaw University of Technology

SEARCH

Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2004(Vol.34), No.2, pp. 149-161

Thermal models for silicon-on-insulator-based optical circuits

Konrad Biwojno, Slawomir Sujecki, Ana Vukovic, Trevor M. Benson, Phil Sewell

Keywords

thermo-optic switch, silicon-on-insulator, rib waveguide

Abstract

Silicon has many advantages as a material for planar photonics but it does not possess a linear electro-optic effect. Whilst free carrier injection has been used to produce optical switches based on silicon on insulator (SOI) rib waveguides, the thermo-optic effect provides an attractive alternative way of modulating the refractive index in these structures. In this paper a fast analytical thermal solver is developed for SOI-based thermo-optic switches. It is shown that lateral heat leakage limits the temperature rise that can be achieved for a given thermal input power. The analytical model is then extended to allow investigation of the effect of thermal isolation trenches. These are found to improve performance by a factor of three. Finally, the effect of these trenches on the modes supported by the waveguide is briefly discussed.

Back to list

© Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2007

