

A quarterly of the Institute of Physics, Wroclaw University of Technology

OPTICA APPLICATI

SEARCH Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2005(Vol.35), No.2, pp. 225-240

Physical analysis of an operation of GalnAs/GaAs quantum-well vertical-cavity surface-emitting diode lasers emitting in the 1.3- μ m wavelength range

Robert P. SARZALA

Keywords

semiconductor laser, VCSEL, GalnAs/GaAs QW

Abstract

Comprehensive three-dimensional self-consistent optical-electrical-thermal-gain physical modelling is used to simulate room-temperature continuous-wave performance characteristics of GalnAs/GaAs lasers emitting in the 1.3- μ m wavelength range. The simulation takes into consideration all physical phenomena crucial for a laser operation including all important interactions between them. A real possibility to design high-performance 1.26- μ m GalnAs/GaAs quantum-well vertical-cavity surface-emitting diode lasers (VCSELs) with the aid of a currently available technology is shown. Their outputs are much higher than in the case of their quantum-dot version. Methods to shift the emitting wavelength range of 1.3 μ m are discussed and anticipated performance characteristics of such a 1.3- μ m VCSELs are determined.

© Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2007

