

A quarterly of the Institute of Physics, Wroclaw University of Technology

OPTICA APPLICATION

Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2005(Vol.35), No.3, pp. 579-589

Simplified modelling of photonic-crystal-confined vertical-cavity surfaceemitting diode lasers

WIodzimierz NAKWASKI

Keywords

photonic crystals, vertical-cavity surface-emitting diode lasers (VCSELs), photonic-crystal-confined VCSELs, simplified VCSEL modelling

Abstract

In standard GaAs-based oxide-confined vertical-cavity surface-emitting diode lasers (VCSELs), their transverse single-fundamental-mode operation is limited to relatively low outputs. It is a direct consequence of small radial sizes of their active regions and strong real waveguiding effects induced by their oxide apertures. Photonic crystals applied in VCSEL designing in a way shown in the present paper enable a subtle waveguiding modification leading to a considerable increase in an output of the VCSEL single-mode operation. Unfortunately, the structure of a photonic crystal damages inside a VCSEL volume its axial symmetry, which makes rigorous simulation of its operation much more difficult. In the present paper, a simplified approach to physical (optical, electrical and thermal) phenomena taking place within VCSEL volumes equipped with photonic crystals is presented. Designing guidelines to obtain single-mode-operating photonic-crystal-confined VCSELs have been proposed. Various possible distributed-Bragg-reflector (DBR) output mirrors designed for various wavelengths have been analysed. From among them, GaN-based DBRs have been found to enable higher single-mode VCSEL outputs, especially for longer wavelengths.

Back to list

Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2007

