

## OPTICA APPLICATA





A quarterly of the Institute of Physics, Wroclaw University of Technology



JLAN

Advanced search

About Optica Applicata

Current issue

Browse archives

Search

**Editorial Board** 

Instructions for Authors

Ordering

Contact us





Optica Applicata 2005(Vol.35), No.3, pp. 597-604

## Piezoelectric effect and spontaneous polarization in computer modelling of A<sup>III</sup>-N heterostructures

Tomasz PIASECKI, Wojciech KOSNIKOWSKI, Bogdan PASZKIEWICZ

## Keywords

A<sup>III</sup>-N, computer modelling, heterostructure, 2-dimensional electron gas (2DEG), strain, piezoelectric effect, spontaneous polarization, heterostructure field effect transistor (HFET)

## Abstract

The Ga, Al and In nitrides ( $A^{III}$ -N) are complete material system suitable in high power and high temperature electronic devices such as  $AI_xGa_{1-x}N/GaN$  heterostructure field effect transistor (HFET). The examples of computer modelling of  $A^{III}$ -N heterostructures were shown.  $A^{III}$ -N materials exhibit strong piezoelectric and spontaneous polarization. The computer modelling results showing the influence of layer polarity on carrier distribution in  $AI_xGa_{1-x}N/GaN$  heterostructure were shown. Only in Ga-faced heterostructures 2-dimensional electron gas (2DEG) is formed. The effect of  $AI_xGa_{1-x}N$  layer relaxation on 2DEG concentration in  $AI_xGa_{1-x}N/GaN$  heterostructure was examined. The difference in spontaneous polarization in  $AI_xGa_{1-x}N$  and GaN caused high 2DEG concentration even in  $AI_xGa_{1-x}N/GaN$  heterostructures with relaxed  $AI_xGa_{1-x}N$  layer. Polarization field in  $AI_xGa_{1-x}N$  layer in  $AI_xGa_{1-x}N/GaN$  heterostructure was enough for achieving high 2DEG concentrations in undoped heterostructure. Strained  $AI_xGa_{1-x}N$  layer was introduced into typical HFET heterostructure. GaN layer above an interlayer was depleted and the negative influence of using non semi-insulating GaN layer in HFET transistor was reduced.

Back to list



© Copyright 2007 T Przerwa-Tetmaier All Rights Reserved 2007

stat 4u