

OPTICA APPLICATA

A quarterly of the Institute of Physics, Wroclaw University of Technology

Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2005(Vol.35), No.3, pp. 635-644

An impact of a localization of an oxide aperture within a vertical-cavity surfaceemitting diode laser (VCSEL) cavity on its lasing threshold

Robert P. SARZALA

Keywords

semiconductor laser, vertical-cavity surface-emitting diode laser (VCSEL), oxide-confined VCSELs, fundamental-

Abstract

In the present paper, an impact of localization of an oxide aperture within a vertical-cavity surface-emitting diode laser (VCSEL) on its threshold operation is analyzed. As expected, a shift of the aperture from the anti-node position of the standing optical wave within a VCSEL cavity to the node position is followed by a drastic change of the wave guiding mechanism from the index guiding to the gain guiding. Index-guided VCSELs have been found to exhibit much lower threshold currents, but any increase in their active-region diameters over a relatively low critical value is followed by excitation of higher-order modes. On the other hand, the fundamental-mode operation is achieved in gain-guided VCSELs with much larger active regions but at the expense of considerably higher lasing thresholds. Therefore, a new VCSEL design, i.e., the separate confinement oxidation (SCO) VCSEL, is proposed. The SCO VCSELs are expected to combine advantages of both previous oxide-confined VCSELs, i.e., low lasing thresholds of index-guided VCSELs with the fundamental-mode operation of gain-guided ones even in the case of large active regions.

Back to list

