

OPTICA APPLICATA

SEARCH

Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2006(Vol.36), No.2-3, pp. 187-192

Photoluminescence study of Nd³⁺-doped Si-rich silica films

David Breard, Fabrice Gourbilleau, Ali Belarouci, Christian Dufour, Richard Rizk

Keywords

Nd, Si, nanoclusters Si, energy transfer

Abstract

 ${
m Nd}^{3+}$ -doped silicon-rich silicon oxide thin films have been fabricated by reactive magnetron co-sputtering of a pure silica target topped with ${
m Nd}_2{
m O}_3$ chips. The incorporation of silicon excess in the films has been controlled by the hydrogen partial pressure $P_{\rm H2}$ introduced in the plasma. Photoluminescence experiments have been made at room temperature using a non resonant excitation with ${
m Nd}^{3+}$ ions. The influences of ${
m Nd}^{3+}$ content and $P_{\rm H2}$ have been studied to improve the ${
m Nd}^{3+}$ emission. Photoluminescence spectra reveal an enhancement of the ${
m Nd}^{3+}$ emission at 0.9 ${
m \mu m}$ and 1.1 ${
m \mu m}$ when silicon nanoclusters and ${
m Nd}^{3+}$ are embedded in a ${
m SiO}_2$ matrix.

Back to list

© Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2007

