

A quarterly of the Institute of Physics, Wroclaw University of Technology

OPTICA APPLICATA

SEARCH Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2006(Vol.36), No.2-3, pp. 359-371

Investigation of deep defects using generation-recombination noise

Haflidi P. Gislason, Djelloul Seghier

Keywords

generation-recombination noise, deep defects, GaN, AlGaN, GaAs

Abstract

Noise spectroscopy is an effective tool to characterize the quality of semiconductor bulk and surface and a figure of merit for device quality as a whole. In certain cases, low-frequency noise can be used for the evaluation of device reliability. Further, measurements of the noise characteristics of GaAs materials are a useful technique when it comes to studying deep defects exhibiting a thermally activated capture. In the paper we present the technique of noise spectroscopy and illustrate it with some applications. They include photocapacitive and noise measurements on a deep DX-like defect which gives rise to persistent photoconductivity in Mg-doped *p*-type GaN films. We also apply DLTS, photoconductivity and noise spectroscopy to characterize *n*-type bulk GaAs and an EL2-related metastable defect. The third example illustrates experimental results on the photoconductivity and noise of forward and reverse biased $Al_{0.3}Ga_{0.7}N/GaN$ -based Schottky barriers. In the light of these results the nature and origin of the responsible centers are discussed.

Back to list

© Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2007

