

OPTICA APPLICATA

A quarterly of the Institute of Physics, Wroclaw University of Technology

SEARCH

Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2008(Vol.38), No.1, pp. 39-47

Luminescence based on energy transfer in xerogels doped with $Tb_{2-x}Eu_x(WO_4)_3$

Beata Grobelna

Keywords

photoluminescence, lanthanide(III) ions, sol-gel method, energy transfer

Abstract

A series of luminescent materials consisting of $\mathrm{Tb}_{2-x}\mathrm{Eu}_x$ (WO₄) $_3$ entrapped in silica xerogel were successfully prepared. The parameter x in the formula changed from 0.4 to 2. Spectroscopic properties such as absorption and luminescence of optically active ions were studied at room temperature. Owing to the energy transfer from the $\mathrm{WO}_4^{2^-}$ groups (ligand-metal charge transfer, (LMCT)) the lanthanide ions show their characteristic emissions in Tb_{2^-} $_x\mathrm{Eu}_x(\mathrm{WO}_4)_3$ entrapped in silica xerogel, i.e., $^5D_0 \to ^7F_J$ (J=0, 1, 2, 3, 4) transition for Eu^{3+} ion and $^5D_4 \to ^7F_J$ (J=6, 5, 4, 3) transition for Tb^{3+} ion. The energy transfer is effective for the mixed tungstate salt $\mathrm{Tb}_{1.35}\mathrm{Eu}_{0.65}(\mathrm{WO}_4)_3$ entrapped in silica xerogel. The Eu(III) emission intensity in the materials under study increases with an increase in the annealing temperature from 600 to 900 °C. This is due to the removal of the effective O -H quenchers from the coordination sphere of the Eu(III) ion.

Back to list

© Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2007

stat 4u