

OPTICA APPLICATA

A quarterly of the Institute of Physics, Wroclaw University of Technology

OPTICA APPLICATA

SEARCH Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2008(Vol.38), No.2, pp. 431-444

Interference coloring of regularly scattered white light

Oleg V. Angelsky, Halina V. Bogatyryova, Peter V. Polyanskii

Keywords

interference, light scattering, rough surfaces, chromascope

Abstract

Interference coloring of the regular component of a polychromatic light scattered by a colorless dielectric slab with a rough surface is considered. To explain the observed alternation of colors as the depth of roughness grows, we apply the model of a transient layer associated with surface roughness, which extends the well-known analogy between the layer and a light-scattering particle. It is shown that coloring of the forward-scattered component of a white light can be interpreted as the action of a peculiar quarter-wavelength (anti-reflecting) layer for some spectral component of a polychromatic probing beam. By applying the modern chromascopic technique, we compare the coloring of the forward-scattered and the specularly reflected radiation. As the demonstration, the effect of "a blue Moon" and "a red Moon" caused by the spectral changes induced by white-light scattering at the rough surface of a colorless glass is represented. — *Natura simplex et fecunda*, A. Fresnel.

© Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2003

