

OPTICA APPLICATA

Wrocław University of Technology

NSTITUTE YSICS

A quarterly of the Institute of Physics, Wroclaw University of Technology

SEARCH Advanced search

About Optica Applicata

Current issue

Browse archives

Search

Editorial Board

Instructions for Authors

Ordering

Contact us

Optica Applicata 2008(Vol.38), No.3, pp. 511-517

Beam shaping based on intermediate zone diffraction of a micro-aperture

Danyan Zeng, Zhijun Sun

Keywords

aperture, diffraction, beam shaping

Abstract

We analyze optical diffraction of a micro-aperture (slit or hole) in a metal screen in the intermediate zone and report its application for beam focusing and collimating in micro-optics. Both finite-difference time-domain simulations and Rayleigh-Sommerfeld diffraction formula were applied to calculate the intermediate-zone diffraction patterns. It is shown that, by controlling the aperture size, the focal length and depth can be adjusted in a very wide range, from subwavelength to tens of wavelengths, while the focal width maintains in an order of wavelength.

Back to list

