

OPTICA APPLICATA

Optica Applicata 2009(Vol.39), No.4, pp. 691-699

SEARCH

Advanced search

About Optica Applicata

Instructions for Authors

Current issue
Browse archives

Editorial Board

Search

Ordering

Contact us

An impact of the electrical pumping scheme on some VCSEL performance characteristics

Seweryn Morawiec, Piotr Kowalczewski, Robert P. Sarzala

Keywords

vertical-cavity surface-emitting diode lasers (VCSEL), simulation of VCSEL performance

Abstract

A comprehensive theoretical model of an operation of vertical-cavity surface-emitting diode lasers (VCSELs) is used to compare anticipated room-temperature (RT) continuous-wave (CW) performance of three modern VCSEL designs: the MESA VCSEL with the upper ring contact on the upper p-side DBR structure and the bottom broad-area contact as well as the single and the double intra-cavity contacted VCSELs. The MESA VCSEL has been found to demonstrate the best mode selectivity because its desired single fundamental mode operation is expected even for the largest 20- μ m diameter devices. However its RT CW lasing thresholds are by about 30% higher than those for both intra-cavity contacted VCSELs because of increasing free-carrier absorption and heat generation. Therefore large-size MESA VCSELs cannot operate at higher temperatures and/or for higher operation currents. On the contrary, although both intra-cavity contacted VCSELs ensure single-fundamental-mode operation for smaller devices only, they seem to operate properly also at higher temperatures and operation currents. Therefore, with an exception of some special applications, intra-cavity contacted VCSELs currently seem to be the best VCSEL designs.

1.8 M

Back to list

© Copyright 2007 T.Przerwa-Tetmajer All Rights Reserved 2007

