

| C                                   |                                                |                                    |                    | My J-STAGE<br>Sign in       |
|-------------------------------------|------------------------------------------------|------------------------------------|--------------------|-----------------------------|
| The Rev                             | iew of Las                                     | ser Engl                           | ineerin            | 9                           |
|                                     |                                                |                                    | THE LASER SOC      | IETY OF JAPAN               |
| <u>Available Issues</u>   <u>Ja</u> | panese                                         |                                    | >>                 | Publisher Site              |
| Author:                             | ADVAN                                          | CED Volume                         | Page               |                             |
| Keyword:                            | Searc                                          | ch j                               |                    | Go                          |
|                                     | Add to<br>Favorite/Citation<br>Articles Alerts | Add to<br>Favorite<br>Publications | Register<br>Alerts | <b>?</b> My J-STAGE<br>HELP |

<u>TOP</u> > <u>Available Issues</u> > <u>Table of Contents</u> > Abstract

ONLINE ISSN : 1349-6603 PRINT ISSN : 0387-0200

## The Review of Laser Engineering

Vol. 31 (2003), No. 8 p.548

[Image PDF (755K)] [References]

## Laser Processing for Fabrication of Silicon Nanoparticles and Quantum Dot Functional Structures

Nobuyasu SUZUKI<sup>1)</sup>, Yuka YAMADA<sup>1)</sup>, Toshiharu MAKINO<sup>1)</sup> and Takehito YOSHIDA<sup>1)</sup>

1) Advanced Technology Research Laboratories, Matsushita Electric Industrial Co., Ltd.

(Received: February 20, 2003)

**Abstract:** We have developed technologies for fabricating nanoparticles of high purity and homogeneous size, and for synthesizing them into new quantum functional structures, such as fine definition luminous devices. We have established a novel formation process for monodispersed semiconductor nanoparticles, by combining pulsed laser ablation for nanoparticle formation and a differential mobility analyzing system for size classification. Furthermore, we have successfully fabricated fine definition multi-color luminous devices with active materials of the monodispersed silicon nanoparticles.

Key Words: Laser ablation, Silicon, Nanoparticles, Size classification

[Image PDF (755K)] [References]

Download Meta of Article[<u>Help</u>] <u>RIS</u> BibTeX

To cite this article:

Nobuyasu SUZUKI, Yuka YAMADA, Toshiharu MAKINO and Takehito YOSHIDA: The Review of Laser Engineering, Vol. 31, (2003) p.548.

doi:10.2184/lsj.31.548 JOI JST.JSTAGE/lsj/31.548

Copyright (c) 2006 by The Laser Society of Japan

