硅基光子学的新进展 Recent Progresses of Si-Based Photonics

余金中 Jinzhong YU

中国科学院半导体研究所 Institute of Semiconductors, Chinese Academy of Sciences P.O. Box 912, Beijing 100083, CHINA E-mail: jzyu@red.semi.ac.cn

Frage Agior Inventions Subset of the product of the

Simulation	OEI AL	yor channel	transmitter	w/ equalization	Ĩ
Channel Channel Attenuation (dB) 09- 07- 0 0	12G 10 Da	13G Stand FR 20 ta Rate [Gb	Low Los Ro4350 ard 30 /S]	Red Zone = Eye Closes	
C	opper sca Headroo	ling more m getting	challeng	ing. d.	

科学五十	年前后,	
1950	2000	前后变化
晶体管发明不久,尚 天可靠产品,微小型 电子管体积>0.6cm ³	VLSI 中每个器 件平均体积 <10 ⁻⁸ cm ³	缩小 10 ⁸ 倍
>50mW	<10nW	缩小 10 ⁷ 倍
天	>10 ⁸ 器件	>10 ⁸ 倍
~µs	~0.1ns	加快数万倍
~10 ² 次/秒	~10 ¹² 次/秒	增加10 ¹⁰ 倍
M Z	引自 王守觉院:	上的学术报告 7
	1950 日本菅支明不久,尚 天可靠产品,微小型 电子管体釈>0,6cm ³ >50mW 天 ~µs ~10 ² 次/秒	1950 2000 晶体管发明不久,尚 VLSI 申每个器 先可靠产品,微小型 件平均体积 电子管体积>0.6cm ³ <10 ⁸ cm ³ >50mW <10nW

Group	Date	h [nm]	w [nm]	loss [dB/cm]	BOX [um]	top clad	Fab.
IMEC	Apr. '04	220	500	2.4	1	no	DUV
IBM	Apr. '04	220	445	3.6	2	no	EBeam
Cornell	Aug. '03	270	470	5.0	3	no	EBeam
NTT	Feb. '05	200	400	2.8	3	yes	EBeam
Yokohama	Dec. '02	320	400	105.0	1	no	EBeam
MIT	Dec.'01	200	500	32.0	1	yes	G-line
LETI/LPM	Apr. '05	300 200	300 500	15.0 5.0	1	yes	DUV
Columbia	Oct. 03	260	600	110.0	1	yes	EBeam
NEC	Oct.04	300	300	19.0	1	yes	EBeam

