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Abstract

We introduce a concept of asymptotic principal values which enables us to handle rigorously 
singular integrals of higher-order poles encountered in the computation of various quantities 
based on correlation functions of a vacuum. Several theorems on asymptotic principal values are 
proved, and they are expected to become bases for investigating and developing some classes 
of regularization methods for singular integrals. We make use of these theorems for analyzing 
mutual relations between some regularization methods, including a method naturally derived 
from asymptotic principal values. It turns out that the concept of asymptotic principal values and 
the theorems for them are quite useful in this type of analysis, providing a suitable language to 
describe what is discarded and what is retained in each regularization method. 

1. Introduction

Physics of quantum vacuum fluctuations is one of the intriguing research topics expected to be 
developed through the interplay between theories, experiments, and practical applications. 

Investigations of quantum vacuum fluctuations even stimulate the border area between physics 
and mathematics. As a typical example of this sort, we often encounter singular integrals in 
computing several quantities based on correlation functions of a vacuum in question. The 
occurrence of singularity or divergence is often a signal of surpassing the border of validity of a 
model by too much extrapolation. Furthermore, it could originate from deeper physical processes 
for which satisfactory consistent mathematics is still unavailable. How to handle singular 
integrals can be then a challenging topic, requiring both mathematical analysis and physical 
considerations. 

Faced with singular integrals, we need to resort to some regularization method to get a finite 
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result. The aim of this paper is to give an organized mathematical basis underlying some typical 
regularization methods and make clear their mutual relations. We introduce below a concept of 
asymptotic principal values which can be a key tool to analyze some classes of regularization 
methods. We then prove several theorems on the asymptotic principal values useful for studying 
regularization procedures. 

There are still various uncertainties to clear up in regularization methods, reflecting our lack of 
mathematical basis for handling infinities. In this situation, we cannot expect any universal 
regularization method, but we need to customize the method by try and error depending on the 
problem in question. It is far from the aim of this paper to judge which method is better than the 
others. It just tries to present a concrete mathematical basis for further considerations and 
developments of better regularization methods. 

The organization of the paper is as follows. In Section 2, we present one simple example where 
singular integrals of a higher-order pole emerge. The origin of singularities in this example is 
physically clear and we can get some idea on how these integrals should be regularized. In 
Section 3, we introduce asymptotic principal values which describe precisely how singular integrals 
behave, which can be useful for investigating and developing several regularization methods. 
We then prove several useful theorems on the asymptotic principal values. In Section 4, we 
analyze some typical regularization methods by means of theorems prepared in the previous 
section. Section 5 is devoted for a summary and several discussions. 

2. Typical Example of Singular Integrals

Let us consider as an example the measurement of the electromagnetic vacuum fluctuations in a 
half-space bounded by a perfectly reflecting infinite mirror. Recently the switching effect [1] and 
the smearing effect due to the quantum spread of a probe particle [2] have been analyzed by 
studying the measurement process of the Brownian particle released in this environment. 

We thus take a model introduced in [3] and reanalyzed in [1, 2]. Suppose that a flat, infinitely 
spreading mirror of perfect reflectivity is placed on the -plane ( ). Then let us investigate the 
quantum vacuum fluctuations of the electromagnetic field inside the half-space  by releasing 
a classical charged probe-particle with mass  and charge  in the environment. We can 
estimate the quantum fluctuations of the vacuum through the velocity dispersions of the probe-
particle released in the environment. 

When the velocity of the probe-particle is much smaller than the light velocity , the motion for 
the particle is described by 

where  is the electric field. 

Within the time-period when the particle does not move so much, (1) along with the initial 
condition  is solved approximately as  

For simplicity, let us consider only the “sudden-switching” case; the measurement is switched on 
abruptly, stably continued for  [sec] before switched off abruptly. It is mathematically described 
by a step-like switching function without any switching tails. The velocity dispersions of the 
particle, , are then given by  

by noting that  = . Here     are the renormalized two-point 

correlation functions of the electric field (the suffix “ ” is for “renormalized”). Now 

 are computed [4] as 

  
(1)

  
(2)

  
(3)



where . (We set  hereafter throughout the paper.) 

It is obvious that the integral in (3) is regular when , but singular when , reflecting the 
singularity at  inherent in the correlation functions  given in (4). 

For the present purpose, it suffices to show only the result of  for  [1] 
 

where  is a dimension-free asymptotic parameter for handling the singular integral properly 
(see Section 3 for details). Accordingly the above expression should be understood as an 
asymptotic expression as . 

This result is derived by a formula for an asymptotic principal value, the rigorous definition of 
which shall be given in the next section,  

for . One can derive (7) with the help of Theorem 1; a more direct derivation is also found 
in Appendix  of [1]. 

Leaving the rigorous treatment of singular integrals for the next section, we here focus on the 
physical reason why the singularity of correlation functions occurs at . Due to the mirror 
reflections of signals with the light velocity, the values of the electric field at the two world-points 

 and  are expected to be strongly correlated when . When the 
measuring time  is short enough (shorter than the travel-time of the signal ), then it always 

follows , so that these correlations are not captured by the probe. When the 
measuring time is long enough ( ), however, these strong correlations accumulate in the 
velocity fluctuations of the particle at . Therefore it is expected that the resulting singular term 
of the form  ( ) contains information on the reflecting boundary. 

On the other hand, typical regularization procedures [5] correspond to discarding such a singular 
term (e.g., the  term in (6)) in effect. It should be clarified when this type of regularization is 
valid and when not. We shall discuss on this point in more detail in Section 4. 

It turns out that the model given here is too simplified and should be modified taking into 
account the switching effect [1] and the smearing effect due to the quantum spread of the probe-
particle [2]. However, it suffices for the present purpose of giving some example of singular 
integrals. 

3. Basic Formulas for Handling Singular Integrals

In view of the example in the previous section, it is clear that we sometimes need to estimate a 
singular integral whose integrand possesses a higher-order pole. In order to investigate various 
regularization methods later, we first need some concrete quantity corresponding to a singular 
integral for which all the information is retained and nothing is discarded. Then, the following 
asymptotic definition of a singular integral may be relevant. 

Definition 1. Let  be an arbitrary real function defined around an interval , differentiable at 
 ( ) sufficiently many times. For a positive integer , then, let us introduce an 

asymptotic principal value of order  defined by 

  

(4)

  

(5)

  
(6)

  
(7)



where  is a sufficiently small positive parameter.  

The asymptotic principal value is a generalization of the standard Cauchy principal value, 
corresponding to , in two ways. First, the order of singularity  can be greater 

than 1. Second, only the asymptotic behavior as  is concerned and the convergence for the 
limit  is not necessarily required. In other words, we focus on how the integral behaves 
near  rather than the  limit itself. In this sense, all the information is retained and no 
infinities are discarded in defining the asymptotic principal value. 

Let us now introduce another asymptotic quantity. 

Definition 2. With the same premises as in Definition 1, we define 

 

It is easily shown that 

with 

By a Taylor-expansion in , it is obvious that  is  for an even  (when ), so that 

the term  in (10) is  and singular in the  limit. Similarly,  is 

 for an odd  (when ), so that  is  and singular as . 

The following definition is just for making formulas below concise. 

Definition 3. We have 

 

With these preparations, let us start with the following lemma. 

Lemma 1. For any function  differentiable at  and for any integer  , it follows that 

Proof. Noting that 

we have 

(8)

(9)

  

(10)

(11)

(12)

  
(13)

(14)

(15)



where the partial-integral has been performed to get the last line. Then the equality follows.  

We now prove a formula which relates a multipole integral with a simple-pole integral. 

Theorem 1. For any function  differentiable sufficiently many times at  and for any integer  ( 
 ), it follows that 

Proof. ( ) For , the claimed equality reduces to 

which clearly holds due to Lemma 1. 
 
( ) Let us assume that the equality holds for a function  and for  ( ), that is,  

 

Now applying Lemma 1 for , we have 

where the assumed equation (18) for  has been used to get the second equality. 
Rearranging the summation, the last equality reduces to 

Thus the claimed equation (16) holds for . 

 
( ) By the mathematical induction, (16) holds for any integer  ( ).  

Based on Theorem 1, it is natural to introduce a quantity , which is a simple-pole part 
plus a regular part of , putting aside singular contributions from higher-order poles. 

Definition 4. We define 

 

  

(16)

(17)

(18)

(19)

(20)

(21)



The “mild part”  of  shall be important in the discussion of regularization 

methods in Section 4. 

We now have a formula which enables us to separate singular contributions from a multipole 
integral. 

Theorem 2. For any function  differentiable sufficiently many times at  and for any integer  ( 
 ), it follows that 

Proof. It is straightforward to show this formula due to Theorem 1 along with (12) and (10).  

Lemma 2. For any function  differentiable at  and for a positive integer  , it follows that 

Proof. We compute  directly as 

where the second term in the last line comes from the -derivative applied to the upper and the 
lower limit of the integral region. Thus the claimed equation follows.  

Theorem 3. For any function  differentiable sufficiently many times at  and for an integer  ( 
 ), it follows that 

Proof. Due to Theorem 2, the claimed equation (25) is equivalent to 

Thus it suffices to show (26). 
 
( ) Let us consider the case , where the R.H.S. (right-hand side) of (26) becomes 

 

In this expression, the -derivative applied to the upper and the lower limit of the integral region 
yields a term which exactly cancels the second term. As a result, the above expression reduces 
to , that is, the L.H.S. (left-hand side) of (26). Thus (26) holds for . 

 
( ) Let us now assume that (26) holds for  ( ), that is, 

 

  

(22)

  
(23)

(24)

  
(25)

(26)

(27)

(28)



Due to Lemma 2, then, it becomes 

where (28) has been used to get the last line. Noting that the relation 

which obviously holds from (11), it reduces to 

Thus (26) holds for . 

 
( ) By the mathematical induction, (26) holds for any integer  ( ). Thus the claimed formula 
(25) has been shown.  

4. Typical Regularization Methods and Their Mutual Relations

Based on the results in the previous section, let us now come back to the problem of 
regularization methods for singular integrals. 

Let us consider a typical singular integral 

for any function  differentiable sufficiently many times at  ( ) and for a positive 
integer . 

4.1. Regularization Method with Partial Integrals

The first method of regularization we consider is a method of partial integrals which is sometimes 
made used of. We insert an identity 

into (32) and formally perform a partial integral  

In this way, the order of singularity is reduced by one. Repeating the similar procedure, the 
integral  is reduced to the  case for which the prescription of the Cauchy principal value may 
be applied. 

(29)

(30)

(31)

  
(32)

  

(33)

  

(34)



Due to Theorem 2, however, it is obvious that singular terms should exist and should have been 
discarded by hand in the above procedure. Indeed, compared with (34) with the rigorous 
expression (15), it is obvious that the singularities which should reside in the second term on the 
R.H.S. of (34) are simply discarded by hand. Thus, in view of Theorem 2, the above method is 
equivalent to the simple replacement of  as  

There is still room, however, to regard the method of partial integrals as a shorthand 
prescription of what we here call the  method of infinitesimal imaginary part, which is much more of 
theoretical grounds [5]. We shall consider this method in the next subsection. 

4.2. Regularization Method with Infinitesimal Imaginary Part

The method of infinitesimal imaginary part is based on well-known Dirac’s formula [6] for an 
integral kernel 

which is most easily shown by estimating an integral  by means of an 

appropriate contour-integral for a suitable function . 

By differentiating the both-sides of (36)  times with respect to , and by applying Theorem 3, 
we get  

in the sense of an integral kernel. Recalling Definition 4, however, we see that the R.H.S. is 
reduced to the  case, for which the prescription of the Cauchy principal value may be applied. 

It is notable that just the introduction of some infinitesimal imaginary part results in a tamable 
quantity such as  at the cost of the imaginary contribution of the second term on the 

R.H.S. of (37). Thus along with some causality arguments [5], it is often argued that the singular 

integral  should be interpreted as the real part of , that is,  

As far as one is evaluating real quantities, one may further argue that the second term on the 
R.H.S. of (37) shall not contribute. If so, the procedure is in effect equivalent to the replacement 
(35). In this sense, the method of partial integrals discussed in the previous subsection may be 
justified provided that it is regarded as a shorthand prescription of the method of infinitesimal 
imaginary part. 

Another way of looking at this method is to pay attention to the L.H.S. (rather than the R.H.S.) of 
(37). As far as computations of real quantities are concerned, then, this method is equivalent to 

the replacement  with  along with taking the limit  after 
evaluating the integral  

There is some subtle points in this method. One of them is to discard the imaginary part of the 
R.H.S. of (37) on the grounds that one is evaluating real quantities. Considering that the 
regularization has been achieved at the cost of introducing the imaginary part though tiny, the 
imaginary part should carry important information and some concern naturally arises whether 
one can discard it so freely. 

Indeed, a simple example can be presented for which this kind of procedure fails. Let us consider 

  
(35)

(36)

  
(37)

  
(38)

  

(39)



an integral  which is purposefully regarded as 

It is obvious that . The analysis by the asymptotic principal value (see the next subsection) 

also results in  in the limit . This is because all the information is retained in the 

prescription of the asymptotic principal value. 

On the other hand, the above-mentioned scheme makes a replacement 

so that 

where a partial integral has been performed to get the last line. However, it is clear that  

as , contradicting with the obvious result . 

Quite interestingly, no contradiction occurs for  with  since the second 

term in (42) becomes  so that no singularity occurs around  for . 

More generally, the integral of the form , if treated by the above prescription, gives 

rise to the dominant contribution  which diverges as . 

With these caveats in mind, let us now move to a new regularization method based on the 
asymptotic principal values. 

4.3. Regularization Method with Asymptotic Principal Values

Let us finally introduce a new regularization method based on the asymptotic principal values. 

For the simple example in Section 2, there has been a definite physical interpretation of the 
singularity in the correlation function. Furthermore, the system considered there has been a 
combination of quantum objects with a macroscopic mirror. Therefore it might be also probable 
that the deepest cause of the singularity resides in the validity issue of the model originating 
from too much extrapolation from the quantum side to the macroscopic situation. Indeed there is 
an investigation showing that the quantum fluctuations of the mirror boundary drastically 
decrease the singular behavior near the mirror [7]. Therefore it is reasonable to take the origin 
of the singularity more realistically (rather than just mathematical phenomenon), expecting that 
some physical processes suppress the order of singularity. 

Going back to the example of the integral  in (32), then, it is possible to interpret  in the sense 
of an asymptotic principal value, 

with the dimension-free parameter  being provided by the ratio of some natural cut-off scale 
with the system-size in question. (E.g., the ratio of the plasma wave-length of the mirror with  
for the example in Section 2). The advantage of this regularization scheme is that one can 
explicitly analyze the -dependence of the integral. For instance, one may study the influence of 
the quantum fluctuations of the mirror by treating  as a fluctuation parameter. The result for 

 given in (6) along with (7) is an example of the computation by the method of asymptotic 
principal values. 

We see that Theorem 2 is the basis for understanding the relation between the regularization 
methods discussed so far. The difference between the method of asymptotic principal value (

) and the method of infinitesimal imaginary part ( ) is given by the second 

term on the R.H.S. of (22), which is of . 

  
(40)

  
(41)

(42)

(43)



5. Summary and Discussions

In this paper, we have focussed on singular integrals with a higher-order pole which frequently 
emerge in computing quantities based on two-point correlation functions of a vacuum. 

To deal with this type of singular integrals, we have introduced the concept of  asymptotic 
principal values. The asymptotic principal value of order , which is a generalization of the Cauchy 
principal value, is defined by introducing a cut-off parameter , focussing solely on the asymptotic 
behavior of the integral as . In this sense, it is a rigorous object retaining all the information 
on the singular integral. 

We have then proved several theorems on asymptotic principal values which are expected to 
serve as bases for studying regularization methods for singular integrals. 

To see how asymptotic principal values can be made use of, we have selected three typical 
regularization methods and have analyzed their mutual relations with the help of theorems we 
have prepared. It has turned out that the concept of asymptotic principal values and related 
theorems are quite useful in this kind of analysis. Indeed, in terms of asymptotic principal values, 
it has been possible to describe without ambiguity what is discarded and what is retained in 
each regularization method. 

No universal regularization method is available so far and we need to carefully select or invent a 
suitable method depending on the problem in question. For instance, we recall the example in 
Section 2, where velocity dispersion of the probe, , is sensitive to the regularization 
method. In particular, the result expected by the method of infinitesimal imaginary part (Section 
4.2) (and the method of partial integrals (Section 4.1)) is 

On the other hand, the result expected by the method of asymptotic principal values (Section 
4.3) is 

by choosing  in the order of the ratio of plasma wave-length and the typical size . Strictly 
speaking, the model in Section 2 is a too simplified one and should be modified taking into 
account the quantum spread of the probe-particle itself. Then the behavior of  at late time 
is corrected to a more reasonable one  rather than  [2]. 

In any case it is significant to compare the results derived by different regularization methods in 
more detail for approaching to a more satisfactory mathematical theory of regularization 
procedures. 
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