THERMAL SCIENCE

home
about
publishers
editorial boards
advisory board
for authors
call for papers
subscription
archive
news
links
contacts
authors gateway

username	
•••••	
submit	

Are you an author in Thermal science? In preparation.

THERMAL SCIENCE International Scientific Journal

Anand P. Roday, Michael J. Kazmierczak MELTING AND FREEZING IN A FINITE SLAB DUE TO A LINEARLY DECREASING FREE-STREAM TEMPERATURE OF A CONVECTIVE BOUNDARY CONDITION

Authors of this Paper Related papers Cited By External Links

ABSTRACT

One-dimensional melting and freezing problem in a finite slab

with time-dependent convective boundary condition is solved using the heat-balance integral method. The temperature, $T_{inf} 1(t)$, is applied at the left face and decreases linearly with time while the other face of the slab is imposed with a constant convective boundary condition where T_{inf} 2 is held at a fixed temperature. In this study, the initial condition of the solid is subcooled (initial temperature is below the melting point). The temperature, $T_{inf} 1(t)$ at time t = 0 is so chosen such that convective heating takes place and eventually the slab begins to melt (i. e., T_{inf} 1 (0) > Tf > T_{inf} 2). The transient heat conduction problem, until the phase-change starts, is also solved using the heat-balance integral method. Once phase-change process starts, the solid-liquid interface is found to proceed to the right. As time continues, and T_{inf},1(t) decreases with time, the phase-change front slows, stops, and may even reverse direction. Hence this problem features sequential melting and freezing of the slab with partial penetration of the solid-liquid front before reversal of the phase-change process. The effect of varying the Biot number at the right face of the slab is investigated to determine its impact on the growth/recession of the solid-liquid interface. Temperature profiles in solid and liquid regions for the different cases are reported in detail. One of the results for Biot number, Bi2 = 1.5 are also compared with those obtained by having a constant value of $T_{inf} 1(t)$.

KEYWORDS

finite slab, melting, freezing, heat balance integral, time-dependent, convection PAPER SUBMITTED: 2008-09-24 PAPER REVISED: 2009-03-10 PAPER ACCEPTED: 2009-03-20 DOI REFERENCE: TSCI0902141R CITATION EXPORT: view in browser or download as text file THERMAL SCIENCE YEAR 2009, VOLUME 13, ISSUE 2, PAGES [141 - 153]

- 1. Alexiades, V., Solomon, A. D., Mathematical Modeling of Melting and Freezing Processes, Hemisphere Publishing Corporation, Washington, DC, USA, 1993, Chapter 2
- Fukusako, S., Seki, N., Fundamental Aspects of Analytical and Numerical Methods on Freezing and Melting Heat Transfer-Problems, Annual Review of Numerical Fluid Mechanics and Heat Transfer, 1 (1987), 1, pp. 351-402
- 3. Kar, A., Mazumder J., Analytic Solution of the Stefan Problem in Finite Mediums, Quarterly of Applied Mathematics, 52 (1994), 1, pp. 49-58
- Boley, B. A., A General Starting Solution for Melting and Solidifying Slabs, Int. J. Engng. Sci., 6 (1968), 89, pp. 89-111
- 5. Boley, B. A., Yagoda, H. P., The Starting Solution for Two-Dimensional Heat Conduction Problems with Change of Phase, Quarterly of Applied Mathematics, 27 (1969), 2, pp. 223-246
- 6. Goodman, T. R., Shea, J. J., The Melting of Finite Slabs, J. Appl. Mechanics, 27 (1960), 1, pp. 16-24
- 7. Zhang, Y. W., et al., An Analytical Solution to Melting in a Finite Slab with a Boundary Condition of Second Kind, Trans. ASME J. Heat Transfer, 115 (1993), 2, pp. 463-467
- 8. Lock, G. S. H, Latent Heat Transfer An Introduction to Fundamentals, Oxford University Press, Oxford, UK, 1994, Chapter 4
- 9. Yuen, W. W., Application of Heat Balance Integral to Melting Problems with Initial Sub Cooling, Int. J. Heat Mass Transfer, 23 (1980), 8, pp. 1157-1160.
- Chan, A. M. C., Smereka, P., Shoukri, M., An Approximate Analytical Solution to the Freezing Problem Subject to Convective Cooling and with Arbitrary Initial Liquid Temperatures, Int. J. Heat Mass Transfer, 26 (1983), 11, pp. 1712- 1715
- 11. Gutman, L. N., On the Problem of Heat Transfer in Phase-Change Materials for Small Stefan Numbers, Int. J. Heat Mass Transfer, 29 (1986), 6, pp. 921-926
- Roday, A. P., Kazmierczak, M. J., Analysis of Phase-Change in Finite Slabs Subjected to Convective Boundary Conditions: Part I - Melting, International Review in Chemical Engineering (Rapid Communications), 1 (2009), 1, pp. 87-99
- Roday, A. P., Kazmierczak, M. J., Analysis of Phase-Change in Finite Slabs Subjected to Convective Boundary Conditions: Part II - Freezing, International Review in Chemical Engineering (Rapid Communications), 1 (2009), 1, pp. 100-108

PDF VERSION [DOWNLOAD]

MELTING AND FREEZING IN A FINITE SLAB DUE TO A LINEARLY DECREASING FREE-STREAM TEMPERATURE OF A CONVECTIVE BOUNDARY CONDITION

