中国电机工程学报 2011, 31(20) 121-126 DOI: ISSN: 0258-8013 CN: 11-2107/TM

本期目录 | 下期目录 | 过刊浏览 | 高级检索

[打印本页] [关闭]

可再生能源发电

农业秸秆烘焙热分析

朱波, 王贤华, 杨海平, 陈应泉, 张世红, 陈汉平

煤燃烧国家重点实验室(华中科技大学)

摘要:

以稻杆、麦秆、棉杆、玉米杆为研究对象,采用热重红外联用方法(TG-FTIR)研究烘焙预处理对农业秸秆热分解特性及气体产物释放机制的影响。实验结果表明:在较低温度时(200~230 ℃),秸秆的热失重不是很明显,而随着温度进一步提高(>260 ℃),秸秆中半纤维素分解剧烈,热失重明显,傅里叶转换红外光谱分析气相产物中主要为水分、CO2以及少量的酸、醇、醛、酮等含氧有机碳氢化合物。

关键词: 农业秸秆 三组分 烘焙 热重红外分析

Thermal Analysis of Agricultural Straw Torrefaction

ZHU Bo, WANG Xianhua, YANG Haiping, CHEN Yingquan, ZHANG Shihong, CHEN Hanping

State Key Laboratory of Coal Combustion(Huazhong University of Science & Technology)

Abstract:

The torrefaction characteristics of agricultural straw were investigated by using thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR) method with rice straw, wheat straw, cotton stalks and corn stalk as typical samples. The results showed that there was no clear mass loss of the straw at a lower temperature (200–230 °C), and the mass loss was obvious as the temperature increased further (>260 °C), which was mainly due to the decomposition of hemicellulose. The FTIR gas products were mainly water, CO2 and small amounts of acids, alcohols, aldehydes, ketones and other organic hydrocarbons.

Keywords: agricultural straw three components torrefaction thermogravimetric-Fourier transform infrared spectroscopy

收稿日期 2010-10-10 修回日期 2010-12-01 网络版发布日期 2011-07-15

DOI:

基金项目:

国家重点基础研究发展计划项目(973项目) (2007CB210202); 国家自然科学基金项目(50930006, 51021065, 50806027)。

通讯作者: 杨海平

作者简介:

作者Email: yhping2002@163.com

扩展功能

本文信息

- ▶ Supporting info
- ▶ PDF(314KB)
- ▶ [HTML全文]
- ▶参考文献[PDF]
- ▶ 参考文献

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶ 引用本文
- ▶ Email Alert
- ▶ 文章反馈
- ▶浏览反馈信息

本文关键词相关文章

- ▶ 农业秸秆
- ▶ 三组分
- ▶ 烘焙
- ▶热重红外分析

本文作者相关文章

- ▶朱波
- ▶ 王贤华
- ▶ 杨海平
- ▶陈应泉
- ▶ 张世红
- ▶ 陈汉平

PubMed

- Article by Zhu,b
- Article by Yu, X.H
- Article by Yang, H.B
- Article by Chen, Y.Q.
- Article by Zhang, S.H
- Article by Chen, H.B

参考文献:

本刊中的类似文章

1. 朱波 陈汉平 杨海平 陈应泉 王贤华 张世红.烘焙对农业秸秆燃烧特性的影响研究[J]. 中国电机工程学报,

2011,31(23): 115-120

Copyright by 中国电机工程学报