

arXiv.org > nucl-th > arXiv:1101.0453

Nuclear Theory

Sigmac Dbar and Lamdac Dbar states in a chiral quark model

W.L. Wang, F. Huang, Z.Y. Zhang, B.S. Zou

(Submitted on 3 Jan 2011)

The S-wave Sigma_c Dbar and Lambda_c Dbar states with isospin I=1/2 and spin S=1/2 are dynamically investigated within the framework of a chiral constituent quark model by solving a resonating group method (RGM) equation. The results show that the interaction between Sigma_c and Dbar is attractive, which consequently results in a Sigma_c Dbar bound state with the binding energy of about 5-42 MeV, unlike the case of Lambda_c Dbar state, which has a repulsive interaction and thus is unbound. The channel coupling effect of Sigma_c Dbar and Lambda_c Dbar is found to be negligible due to the fact that the gap between the Sigma_c Dbar and Lambda_c Dbar thresholds is relatively large and the Sigma_c Dbar and Lambda_c Dbar transition interaction is weak.

Comments:	7 pages,2 figures
Subjects:	Nuclear Theory (nucl-th) ; High Energy Physics - Phenomenology (hep-ph)
Journal reference:	Phys.Rev.C84:015203,2011
DOI:	10.1103/PhysRevC.84.015203
Cite as:	arXiv:1101.0453 [nucl-th]
	(or arXiv:1101.0453v1 [nucl-th] for this version)

Submission history

From: Wenling Wang [view email] [v1] Mon, 3 Jan 2011 04:21:38 GMT (46kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Search or Article-id

All papers 🚽 Go!

(Help | Advanced search)

Download:

- PDF
- PostScript
- Other formats

Current browse context: nucl-th

< prev | next >

new | recent | 1101

Change to browse by:

hep-ph

References & Citations

- INSPIRE HEP (refers to | cited by)
- NASA ADS

