	Home About FAQ My Account
Home > ETDS > THESES > 923	Enter search terms:
	in this series
	in this series
Masters Theses 1896 - February 2014	Advanced Search
Off-campus UMass Amherst users: To download campus access theses, please use the following lir	nk to Notify me via email or RSS
log into our proxy server with your UMass Amherst user name and password.	
	Browse
Non-UMass Amherst users: Please talk to your librarian about requesting this thesis through interli	lbrary Collections
loan.	Disciplines
Theses that have an embargo placed on them will not be available to anyone until the embargo ex	pires. <u>Authors</u>
	Author Corner
	nload <u>Author FAQ</u>
in Electronic Structure Calculations within	Links
Included in	
Alan R. Levin, University of Massachusetts Amherst	University Libraries UMass Amherst
Follow	
Electronic Devices an	nd <u>sources</u>
Document Type Semiconductor Open Access Manufacturing	
Open Access <u>Manufacturing</u> Commons, Numerica	al
Degree Program Analysis and	
Electrical & Computer Engineering Computation Commo	ons
Degree Type	
Master of Science in Electrical and Computer Engineering (M.S.E.C.E.)	
Year Degree Awarded	SHARE
2012	
Month Degree Awarded	
September	
Keywords	
Electronic Structure, FEAST, Muffin-tin, Density Functional Theory	

Eric

Advisor Last Name Polizzi

Abstract

This thesis describes an accurate and scalable computational method designed to perform nanoelectronic structure calculations. Built around the FEAST framework, this method directly addresses the nonlinear eigenvalue problem. The new approach allows us to bypass traditional approximation techniques typically used for first-principle calculations. As a result, this method is able to take advantage of standard muffin-tin type domain decomposition techniques without being hindered by their perceived limitations. In addition to increased accuracy, this method also

has the potential to take advantage of parallel processing for increased scalability.

The Introduction presents the motivation behind the proposed method and gives an overview of what will be presented for this thesis. Chapter 1 explains how electronic structure calculations are currently performed, including an overview of Density Functional Theory and the advantages and disadvantages of various numerical techniques. Chapter 2 describes, in detail, the method proposed for this thesis, including mathematical justification, a matrix-level example, and a description of implementing the FEAST algorithm. Chapter 3 presents and discusses results from numerical experiments for Hydrogen and various Hydrogen molecules, Methane, Ethane, and Benzene. Chapter 4 concludes with a summary of the presented work and its impact in the field.

Advisor(s) or Committee Chair Polizzi, Eric

> This page is sponsored by the <u>University Libraries.</u> © 2009 <u>University of Massachusetts Amherst</u> • Site Policies