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Abstract

Active and passive realization of Fractance device of order 1/2 is presented. The crucial point in 
the realization of fractance device is finding the rational approximation of its impedance function. 
In this paper, rational approximation is obtained by using continued fraction expansion. The 
rational approximation thus obtained is synthesized as a ladder network. The results obtained 
have shown considerable improvement over the previous techniques. 

1. Introduction

A system which is defined by fractional order differential equations is called as Fractional order 
System [1]. The significant advantage of Fractional order systems compared to integer order 
systems are that they are characterized by memory. Fractional order systems is characterized by 
infinite memory, whereas they are finite for integer order systems. Fractance Device, semi-infinite 

lossy Transmission Line, diffusion of heat into the semi-infinite solid,  controllers, and so 
forth are some of the examples of fractional order systems [1, 2]. For a semi infinite lossy 
transmission line current is related to applied voltage as, . In the case of diffusion of 
heat into the semi-infinite solid, the temperature at the boundary of the surface is related to half 
integral of heat. However, in this paper, focus is made only on fractance device and its 
realization. 

Fractance device is an electrical element which exhibits fractional order impedance properties. 
The Impedance of the fractance device is defined as 

where  is the angular frequency and  takes the values as −1, 0, 1 for capacitance, resistance, 
and the inductance, respectively [1]. Fractance device finds applications in Robotics, Hard Disk 
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drives, signal processing circuits, fractional order control, and so forth [2–7]. The following are 
some of the important points about Fractance device. 

Fractance device can be realized as either tree, chain, or a net grid type networks. Different 
recursive structure realizations were presented in [3, 4]. But, the disadvantage is hardware 
complexity [3, 4]. The second way of realizing fractance device is synthesizing network from the 
rational approximation describing its fractional order behavior. So, the key point in the realization 
of fractance device is finding the rational approximation of the fractional order operator. A 
rational approximation transfer function is characterized only by poles, whereas irrationality of 
fractional transfer functions gives a cut on the complex -plane. Due to the irrationality, the 
fractional linear oscillations have a finite number of zeros [8]. The continued fractions 
approximation ignores this feature. So, in this paper, rational approximation for  is obtained 
using continued fraction expansion. Fractance device of order  is defined by the following volt-
ampere characteristic: 

where . By making use of well known Regular Newton Process, Carlson and Halijak [6] 
have obtained rational approximation of  as 

In [7], by approximating an irrational function with rational one, and fitting the original function in 
a set of logarithmically spaced points, Mastuda has obtained rational approximation of  as, 

Oustaloup [2] has approximated the fractional differentiator operator  by a rational function 
and derived the following approximations: 

In this paper, a rational approximation for  is obtained using continued fraction expansion. The 
rational approximation thus obtained is synthesized. In Section 2, realization of fractance device 
is presented. Numerical Simulations are presented in Section 3. Finally, Conclusions were drawn 
in section 4. 

2. Realization

We have the continued fraction expansion for  as [9] 

The above continued fraction expansion converges in the finite complex -plane, along the 
negative real axis from  to . Substituting  and taking number of terms of (6), 
the calculated rational approximations for  are presented in Table 1. In order to get the 
rational approximation of , the expressions has to be simply reversed. 
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The phase angle is constant with frequency but depends only on the value of fractional 

order, . Hence this device is also called as constant phase angle device or simply fractor [3].
Moderate characteristics between inductor, resistor, and capacitor can be obtained 

using fractance device.
By making use of an operational amplifier, a fractional order differentiation and 

integration can be accomplished easily [2].
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Figures 1(a) and 1(b) compare the magnitude and phase responses of the rational 
approximations with the ideal one. It is observed from Figures 1 and 2 that fifth-order rational 
approximation is best fit to ideal response up to certain range of frequencies. So, 

In order to check for the stability of the obtained rational approximations, pole-zero plot is drawn 
and are shown in Figures 2 and 3. 

From Figures 2 and 3, it is evident that pole and zeros interlace on negative real axis making the 
system as stable one. So, the obtained rational approximation can be synthesized using RC or 
RL elements [10]. The realized active and networks are shown in Figures 5 and 4, respectively. 

3. Results

The following plots from Figures 6–11 compare the magnitude and phase responses for  and 
 obtained using Oustaloup method and the proposed method. 

Table 1: Rational approximations for .
 

 

Figure 1: Comparison of magnitude and phase responses of rational 
approximation functions with ideal . 

 

Figure 2: Pole-zero plot of .
 

 

Figure 3: Pole-zero plot of .
 

 

Figure 4: Passive realization of the fractance device. 
 

Figure 5: Active realization of the fractance device. 

 

Figure 6: Magnitude response of .
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4. Conclusions

Realization of fractance device of order  using continued fraction expansion is presented. 
From the results, it can be observed that the magnitude and phase responses have shown 
considerable improvement than compared to Oustaloup method. The percent relative error is 
almost zero for larger range of frequencies using proposed method. So, the proposed method 
can be used effectively for the realization like fractance device, fractional order differentiators, 
fractional order integrators, and so forth. 
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Figure 8: Error plot of .
 

 

Figure 9: Magnitude response of .
 

 

Figure 10: Phase response of .
 

 

Figure 11: Error plot of .
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