
Ridgelets: Estimating with Ridge Functions

Emmanuel J. Candès

Department of Statistics

Stanford University

Stanford, California 94305–4065

emmanuel@stat.stanford.edu

Feedforward neural networks, projection pursuit regression, and more generally, estimation via ridge

functions have been proposed as an approach to bypass the curse of dimensionality and are now

becoming widely applied to approximation or prediction in applied sciences. To address problems

inherent to these methods – ranging from the construction of neural networks to their efficiency and

capability – Candes (1999d) developed a new system that allows the representation of arbitrary

functions as superpositions of specific ridge functions, the ridgelets.

In a nonparametric regression setting, this article suggests expanding noisy data into a ridgelet series

and applying a scalar nonlinearity to the coefficients (dumping); this is unlike existing approaches

based on stepwise additions of elements. The procedure is simple, constructive, stable and spatially

adaptive – and fast algorithms have been developed to implement it.

The ridgelet estimator is nearly optimal for estimating functions with certain kinds of spatial

inhomogeneities. In addition, ridgelets help to identify new classes of estimands – corresponding to

a new notion of smoothness – that are well suited for ridge functions estimation. While the results

are stated in a decision theoretic framework, numerical experiments are also presented to illustrate

the practical performance of the methodology.
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1 Introduction

In a nonparametric regression problem, one is given a pair of random variables (X,Y ) where, say,

X is a d-dimensional vector and Y is real valued. Given data (Xi, Yi)Ni=1 and the model

Yi = f(Xi) + εi, (1.1)

where ε is the noisy contribution, one wishes to estimate the unknown smooth function f .

It is observed that well-known regression methods such as kernel smoothing, nearest-neighbor,

spline smoothing (see Härdle, 1990 for details) may perform very badly in high dimensions because

of the so-called curse of dimensionality. The curse comes from the fact that when dealing with a

finite amount of data, the high-dimensional unit cube [0, 1]d is mostly empty, as discussed in the

excellent paper of Friedman and Stuetzle (1981). In terms of estimation bounds, roughly speaking,

the curse says, for example, that unless you have an enormous sample size N , you will get a poor

mean-squared error.

1.1 Projection Pursuit Regression (PPR)

In an attempt to avoid the adverse effects of the curse of dimensionality, Friedman and Stuetzle

(1981) suggest approximating the unknown regression function f by a sum of ridge functions,

f(x) ∼
m∑
j=1

gj(uTj x),

where the uj ’s are vectors of unit length, i.e. ‖uj‖ = 1. In its abstract version, the approximation

process operates in a stepwise and greedy fashion. At stage m, it augments the fit fm−1 by adding

a ridge function gm(uTmx) where um and gm are chosen so that gm(uTmx) best approximates the

residuals f(x)− fm−1(x).

For the sampling case and in a regression setup, there is a statistical analogy of the aforementioned

greedy procedure. At stage m, the fit fm−1 is augmented by adding a ridge function gj(uTj x)

obtained as follows: calculate the residuals of the (m− 1)th fit ri = Yi −
∑m−1

j=1 gj(uTj Xi); and for

a fixed direction u, plot the residuals ri against uTxi; fit a smooth curve g and choose the best

direction u, so as to minimize the residuals sum of squares
∑

i(ri−g(uTXi))2. The algorithm stops

when the improvement is small.

The approach was revolutionary because instead of averaging the data over balls, PPR performs

a local averaging over narrow strips: |uTx − t| ≤ h, thus avoiding the problems relative to the

inherent sparsity of the sample.
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1.2 Neural Networks

Neural networks are also very much in use in statistics for regression, classification, discrimination,

etc. (see the survey of Cheng and Titterington, 1994 and its joined discussion). The idea is to

approximate the regression surface by a superposition of ridge functions of the form

f =
m∑
j=1

αjρ(kTj x− bj), (1.2)

where the m terms in the sum are called neurons; the αj and bj are scalars; and the kj are d-

dimensional vectors. In that field, ρ is usually sigmoidal, that is, bounded and monotone. A

prevailing choice is the logistic function ρ(t) = 1/(1 + e−t).

As far as constructing the approximation, the relaxed greedy algorithm is a popular approach:

starting from f0(x) = 0, it operates in a stepwise fashion running through steps i = 1, . . .m; we

inductively define

fi = α∗fi−1 + (1− α∗)ρ(k∗Tx− b∗), (1.3)

where (α∗, k∗, b∗) are solutions of the optimization problem

arg min
0≤α≤1

arg min
(k,b)∈Rn×R

‖f − αfi−1 + (1− α)ρ(kTx− b)‖2. (1.4)

Thus, at the i-th stage, the algorithm substitutes to fi−1 a convex combination involving fi−1 and

a new term, a neuron ρ(kTx− b), that results in the largest decrease in approximation error (1.4).

In the sampling case, the L2 norm ‖ · ‖ is replaced by the discrete euclidian norm.

Of course, PPR and neural nets regression are of the same flavor as both attempt to approximate

the regression surface by a superposition of ridge functions. One of the main differences is perhaps

that neural networks allow for a non-smooth fit since ρ(kTx − b) resembles a step function when

the norm ‖k‖ of the weights is large. On the other hand, PPR can make better use of projections

because of the freedom to choose a different profile g at each step.

1.3 Problems

This approach (approximating the regression surface by a sum of ridge functions) poses new and

challenging questions both at a practical and theoretical level, ranging from the construction of

neural networks to their efficiency and capability. We now detail some of these questions.

1. How to construct neural networks? In practice, minimizing (1.3) is rather problematic as

the (d + 2)-dimensional error surface, as a function of the parameters, may exhibit several

local minima. This fact is more and more acknowledged in the literature; we quote Barron
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(Cheng and Titterington, 1994) “there is no known algorithm for network estimation that

is proven to produce accurate estimates in a feasible amount of computation time.” This

statement is not pure rhethoric. Actually, there is an emergence of negative results about the

computational feasibility of fitting neural nets. In a nutshell, the aim of this pioneering work

is to show that it is impossible to design algorithms running in polynomial time that would

produce ‘accurate estimates’ (the exact formulation is that this problem is NP-hard and it is

a conjecture that NP-hard problems cannot be solved in polynomial time). The papers “The

computational intractability of training sigmoidal neural networks” by Jones (1997) and “On

the infeasibility of training neural networks with small mean-squared error” by Vu (1998) are

important references in this area.

Even if one is willing to ignore the difficulty of implementing a stepwise addition of elements,

we may wonder about the efficiency of such a procedure. It is well known that such procedures

may have weak estimation properties because of their greedy nature; for instance, the inability

to look ahead may cause initial errors that the algorithm keeps on trying to correct.

2. Neural nets for which regression surface? It would be of interest to be able to identify classes

of functions for which neural networks are more efficient than other methods of estimation or,

more ambitiously, a class F for which it could be proved that linear combinations of carefully

selected ridge functions are minimax or nearly minimax over F . In less technical terms,

we would like to know for which estimands ridge function approximation and/or estimation

makes much sense.

3. Which rates should we expect? There are very few results about quantitative rates of estima-

tion. For instance, what is the performance of estimators of the form:

f̂(x) =
m∑
j=1

αjρ(kTj x− bj),

(where the paramaters αj , kj , bj are estimated from data) in terms of the mean squared-error

MSE(f, f̂) = E‖f − f̂‖22?

1.4 Overview

This paper is about these important questions. While existing approaches are based on stepwise

construction of approximations, we develop a new approach based on a new transform, namely, the

ridgelet transform introduced by Candes (1999d). The ridgelet transform represents quite general

functions as superpositions of ridge functions in a stable and concrete way (section 2) and the point

of this paper is to show how one can use this representation to construct estimators and derive

precise estimation bounds.
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When presented with noisy data, we suggest to expand the data into a ridgelet series and apply a

scalar nonlinearity (soft or hard thresholding) to the coefficients (section 3). We want to investigate

the performance of this simple, stable and constructive procedure.

Roughly speaking, our estimator is optimal for estimating multivariate regression surfaces that

exhibit specific sorts of high-dimensional spatial inhomogeneities (section 5). Following this obser-

vation, we will introduce a new notion of smoothness that models these spatial inhomogeneities;

it will be shown that thresholding the ridgelet series is nearly minimax for these new smoothness

classes (section 6). In other words, projection based approaches make a lot of sense for estimating

objects from these classes.

In addition, we will try to argue that the ridgelet transform gives decisive insights about the

limitations of neural networks: as a surprising and remarkable example, the estimation of radial

functions with projection based approaches will be discussed (section 7).

Finally, some numerical experiments will illustrate the power of these new ideas (section 8). The

discussion section 9 will survey some extensions of the present work and identify areas for future

research.

2 Ridgelets

In this section, ĝ will denote the Fourier transform of g

ĝ(ξ) =
∫
Rd
f(x)e−ix

T ξ dx. (2.1)

In d dimensions, the ridgelet construction starts with a univariate function ψ satisfying an oscillatory

condition, namely, ∫
|ψ̂(ξ)|2/|ξ|d dξ <∞; (2.2)

a ridgelet is a function of the form:

1
a1/2

ψ

(
uTx− b

a

)
, (2.3)

where a and b are scalar parameters and u is a vector of unit length. Of course, a ridgelet is a

ridge function and resembles a neuron but for the oscillatory behavior of the profile (the profile

of a neuron is sigmoidal, i.e. monotone increasing). A ridgelet has a scale a, an orientation u,

and a location parameter b. Ridgelets are concentrated around hyperplanes: roughly speaking the

ridgelet (2.3) is supported near the strip {x, |uTx− b| ≤ a}. Ridgelets are pictured on Figure 2 for

various values of these parameters.
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Figure 1: Ridgelets.
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The nice thing is that one can represent any function as a superposition of these ridgelets: we

define the ridgelet coefficient as

Rf (a, u, b) =
∫
f(x) a−1/2ψ(

uTx− b
a

) dx; (2.4)

then for any f ∈ L1 ∩ L2(Rd), we have

f(x) =
∫
Rf (a, u, b)a−1/2ψ(

uTx− b
a

) dµ(a, u, b), (2.5)

where dµ(a, u, b) = da/ad+1 du db (du being the uniform measure on the sphere); furthermore, this

formula is stable as one has a Parseval relation

‖f‖22 =
∫
|Rf (a, u, b)|2dµ(a, u, b). (2.6)

Similar to the continuous transform, there is a discrete transform. One can find a discrete set of

parameters (ai, bi, ui)i∈I such that the collection (ψai,bi,ui)i∈I satisfies the following property: there

exist two constants A and B such that for any f supported in the unit cube [0, 1]d with finite L2

norm, we have

A ‖f‖2 ≤
∑
i∈I
|〈f, ψai,bi,ui〉|2 ≤ B ‖f‖2. (2.7)

The previous equation says that the datum of the ridgelet transform at the points (ai, bi, ui)i∈I
suffices to reconstruct the function perfectly. In this sense, this is analogous to the Shannon

sampling theorem for the reconstruction of bandlimited functions. Indeed, standard arguments

show that there exists a dual collection (ψ̃ai,bi,ui)i∈I with the property

f =
∑
i∈I
〈f, ψ̃ai,bi,ui〉ψai,bi,ui =

∑
i∈I
〈f, ψai,bi,ui〉ψ̃ai,bi,ui , (2.8)

where the notation 〈·, ·〉 stands here and throughout the remainder of this paper for the usual inner

product of L2: 〈f, g〉 =
∫
f(x)g(x)dx.

The discretization is as follows:

{ψi(x) = 2j/2ψ(2juTj,`x− k), j ≥ j0, uj,` ∈ Σj , k ∈ Z}. (2.9)

Ridgelets are directional and, here, the interesting aspect is the discretization of the directional

variable u; this variable is sampled at increasing resolution so that at scale j, the discretized set is

a net of nearly equispaced points at a distance of order 2−j ; a detailed exposition on the ridgelet

construction is given in Candes (1999d). As in (2.9), we will often use the compact notation ψi

(i ∈ I) and, therefore, we will keep in mind that the index runs through an enumeration of the

triples (j, `, k). It will then be handy to use the notation j(i) to refer to the scale of ψi.
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It will be more convenient to work with coarse scale element and we will choose to work with a

frame of the form:

{ϕ(uT` x− k), 2j/2ψ(2juTj,`x− k), j ≥ 0, uj,` ∈ Σj , k ∈ Z}, (2.10)

2.1 Why a discrete transform?

Various completeness theorems are known for the set of neurons DNN = {ρ(kTx−b), k ∈ Rd, b ∈ R},
see Cybenko (1989), for example. This says that for a given a square integrable function f supported

in the unit cube, there exist finite linear combinations of neurons that are arbitrarily close to f :

i.e., for any ε > 0, one can find parameter values (kj , bj)1≤j≤J such that

‖f −
J∑
j=1

αjρ(kTj x− bj)‖2 < ε.

In the introduction we have described a popular approach – the greedy algorithm – to compute

these approximations. At each step, one would need to solve an optimization problem of the form

min
0≤α≤1

min
(k,b)∈Rn×R

‖f − αfi−1 + (1− α)ρ(kTx− b)‖; (2.11)

and in any real implementation, one would probably need to restrict the search for a minimum over

a grid. What are the properties of a restricted search? Is there a grid preserving the completeness

property? If so, what is the proper spacing of this grid? In other words, what is the real complexity

of the search (2.11)? In our opinion, the discretization (2.9) gives a precise answer to these questions.

3 The paradigm

The aim of this paper is to discuss the use of the ridgelet representation for statistical estimation;

the object of this section is to spell out the statistical model that will furnish the framework in

which the results of the following sections are derived.

As in Ibragimov and Hasminskii (1981) or Efroimovich and Pinsker (1982), consider the following

white noise model:

Yε(dx) = f(x)dx+ εW (dx), x ∈ [0, 1]d. (3.1)

Here, f is the object to be recovered and W (dx) is the standard d-dimensional white noise. We

will measure the performance of an estimator f̂ by the classical integrated mean-squared error

MSE(f, f̂) = E‖f̂ − f‖2L2[0,1]d . (3.2)
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For a class F of objects, let Rε(F) be the minimax mean-squared error in the white noise model

Rε(F) = inf
f̂

sup
F
E‖f̂ − f‖2L2[0,1]d , (3.3)

where of course the estimates f̂ are restricted to be obtained through measurable procedures, i.e.

f̂ = F̂ (Yε), with F̂ measurable.

The white noise model (3.1) is standard in the literature of mathematical statistics. The justification

of this continuous setup is that it may be viewed as the limit of a number of nonparametric discrete

models, see Johnstone (1999) for details. In the discussion section, we will comment, however, on

the limits of this model.

3.1 The Sequence Model

A now classical approach to the study of nonparametric problems of the form (3.1)–(3.3) is to, first,

transform the data and, second, analyze and/or solve the problem obtained after transformation,

the latter problem being hopefully much easier than the original one. This approach has already

proven to be very successful; see Pinsker (1980), for example, where the estimation problem is

solved by looking at the estimation of the Fourier coefficients of the function f to be recovered and

Donoho et al. where the wavelet coefficients are to be estimated. Our approach will be similar as

we study the estimation of the ridgelet coefficients.

Projecting the white noise model (3.1) onto the ridgelet frame (ψi)i∈I gives rise to a sequence

space model obtained as follows: for any element of the frame ψi, we calculate the noisy coefficient

yi = 〈Yε, ψi〉; it is clear that yi is a Gaussian random variable with mean θi = 〈f, ψi〉 and variance

ε2‖ψi‖22 = ε2σ2
i . In other words, we have the following model:

yi = θi + εzi, i ∈ I, (3.4)

where for a fixed and finite subset I ⊂ I, {zi}i∈I is a Gaussian vector with mean 0 and covariance

matrix V , the Gramm matrix of the ridgelets Vi,j = 〈ψi, ψj〉. Now suppose that we are estimating

the ridgelet coefficient θ from the data; i.e., we are considering an estimator of the form

f̂ =
∑
i∈I

θ̂i ψ̃i. (3.5)

Then the lemma stated below implies that

‖f̂ − f‖22 ≤ A−1 ‖θ̂ − θ‖2`2(I), (3.6)

where A is the constant appearing on the left-hand side of (2.7). Therefore, control of the risk

E‖θ̂− θ‖2`2(I) at the coefficient level gives control of the integrated mean-squared error E‖f̂ − f‖22.

As we will see, this observation is a key fact in establishing upper estimation bounds.
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Lemma 3.1 Let (ai)i∈I be a sequence in `2 and let

f̃ =
∑
i∈I

aiψ̃i,

then we have

‖f̃‖22 ≤ A−1‖a‖2`2 .

Proof of Lemma. We let F̃ be the synthesis operator defined by F̃ a =
∑
aiψ̃i and F be the analysis

operator Ff = (〈f, ψi〉)i∈I . The property (2.7) gives

‖f̃‖2 = ‖F̃ a‖2 ≤ A−1‖F F̃a‖2`2 .

Now, it is not hard to see that F F̃ is the orthogonal projector onto the range of F and has,

therefore, a norm (as an operator from `2 onto itself) bounded by 1. Consequently, we have

‖f̃‖2 ≤ A−1‖F F̃a‖2`2 ≤ A
−1‖a‖2`2 ,

which is what needed to be shown.

3.2 Ridgelet shrinkage

In the following sections, we will mostly consider shrinkage estimators, i.e. where the θ̂i’s are ob-

tained by applying some scalar nonlinearities (hard/soft-thresholding, etc.) to the noisy coefficients

yi = 〈ψi, Yε〉: that is,

θ̂i = ηi(yi) = ηi(〈ψi, Yε〉),

yielding simple estimates of the form

f̂ =
∑
i∈I

ηi(〈ψi, Yε〉)ψ̃i, (3.7)

. We stress that the shrinkage procedure yielding f̂ (3.7) is well defined, constructive and stable.

The object of the next sections is to study the performance of this estimator.

4 Abstract statistical estimation

The goal of this section is to prove a lemma that will help to establish the main forthcoming

results of the paper. The material presented here closely follows the concept of oracle inequalities

developed by Donoho and Johnstone (1994).
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Suppose that we have the following problem:

yi = θi + εzi, i ∈ I, (4.1)

where for any finite subset I ⊂ I, {zi}i∈I is a Gaussian vector with mean 0 and covariance matrix

Vi,j . In this section, I might be finite or countable. This model is fairly standard as we wish

to estimate the mean θ of a Gaussian vector. Several authors have studied this problem and an

excellent account may be found in Johnstone (1999). In particular, it is now well established that

the quality of the estimation is linked to the sparsity of the vector θ.

We introduce some notation. Let ηS denote the soft threshold nonlinearity

ηST (y, λ) = sgn(y) (|y| − λ)+ (4.2)

and rS(λ, µ) the risk of the latter rule: that is

rS(ε;λ, µ) = E [ηS(Y, λ)− µ]2 , Y ∼ N(µ, ε2).

(In the case ε = 1, we will simply write rS(λ, µ).)

We borrow the following lemma from Johnstone (1999).

Lemma 4.1 Let r̄(λ, µ) = min{rS(λ, 0) + µ2, 1 + λ2}. Then for any choice of threshold λ and

µ ∈ R,

1
2
r̄(λ, µ) ≤ rS(λ, µ) ≤ r̄(λ, µ). (4.3)

There is a useful corollary to this lemma:

Corollary 4.2 Let λδ =
√

2 log δ−1. Then

rS(λδ, µ) ≤ (1 + 2 log δ−1) (δ + µ2 ∧ 1).

Now let Y ∼ N(µ, ε2) and ηS(Y, λ) be a soft thresholding estimator with parameter λ: a simple

rescaling argument gives

rS(ε;λ, µ) = ε2rS(λ/ε, µ/ε).

Therefore, we have

rS(ε;λ, µ) ≥ 1
2

min(µ2, ε2); (4.4)

in addition, the choice of λε,δ = ε
√

2 log δ−1 as the value of the threshold yields the upper bound

rS(ε;λε,δ, µ) ≤ (1 + 2 log δ−1) (ε2δ + µ2 ∧ ε2).
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Remark. A similar inequality exists for the hard thresholding rule as in this case one has

rH(λ, µ) ≥ ξ(λ/ε) min(µ2, ε2),

where ξ is some function bounded away from zero, 0 < ξ < 1, which tends to 1 when its argument

tends to ∞ (Donoho, 1993).

Suppose now that I ′ is a finite subset of I and let θ̂I′ be the estimator defined by

θ̂i =

{
ηS(yi, λσi) i ∈ I ′

0 i ∈ I \ I ′
, (4.5)

where λ = ε
√

2 log(#I ′). Then, of course, for i ∈ I ′, we have

1
2

min(ε2σ2
i , θ

2
i ) ≤ E(θ̂i − θi)2 ≤ (1 + 2 log(#I ′))({#I ′}−1ε2σ2

i + θ2
i ∧ ε2σ2

i ).

Hence, we have established the following result:

Lemma 4.3 Let θ̂ be the threshold estimator (4.5). Then,

1
2

∑
i∈I′

min(ε2σ2
i , θ

2
i ) +

∑
i∈I\I′

θ2
i ≤ E‖θ̂ − θ‖2`2

≤ (1 + 2 log(#I ′))(ε2σ̄2 +
∑
i∈cI′

θ2
i ∧ ε2σ2

i ) +
∑
i∈I\I′

θ2
i , (4.6)

where σ̄2 is simply a shorthand for {#I ′}−1
∑

i∈I′ σ
2
i .

The right-hand side of the above inequality is often referred to as the oracle inequality (Donoho

and Johnstone, 1994). Similar bounds exist for hard thresholding rules as well.

It easily follows from the previous lemma that no thresholding rule exists with better lower bounds

than

E‖θ̂ − θ‖2`2 ≥
1
2

∑
i

ε2σ2
i ∧ θ2

i . (4.7)

Hence, in the context of the sequence model, the sparsity of the coefficient sequences (3.4) (ridgelets,

wavelets, etc.) gives lower estimation bounds of thresholding rules.

5 Linear singularities: The ridgelet miracle

5.1 Linear Singularities

Consider the mutilated Gaussian defined, as follows:

f(x) = 1{uT x≥b}e
−|x|2/2. (5.1)
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This function is discontinuous along the hyperplane uTx = b and smooth away from this hyperplane.

In some sense, this is a very simple object. We wish to recover this object from noisy data (3.1) and

will use the integrated mean-squared error as a measure of performance (3.2). (We acknowledge

that the mutilated gaussian is not supported in the unit cube and, therefore, does not fit into

the statistical paradigm that we set up. We chose the mutilated gaussian for its evocative power,

rather than anything else. The conscious reader may substitute the gaussian e−|x|
2/2 with a nice

C∞ function g supported in the unit cube in definition (5.1).)

We are going to compare the perfomance of our ridgelet shrinkage estimator (3.7) to that of kernel

smoothers (Stone, 1977) or wavelet-based estimators as proposed by Donoho and Johnstone. Intro-

ducing a bit of terminology, f̂KS will denote an estimator obtained by kernel smoothing; similarly,

f̂WT will denote a wavelet shrinkage estimator.

So, suppose that one uses a kernel smoother to recover f , then it can be shown that its integrated

mean-squared error is bounded below by

MSE(f̂KS , f) ≥ C (ε2)1/(d+1). (5.2)

It is interesting to note that the above inequality holds for any choice of bandwidth: that is, even

if one had available an oracle that would specify the optimal bandwidth, one would not be able

to obtain better bounds than (5.2). The optimal choice of the bandwidth comes from the classical

bias/variance trade-off: the smaller the bandwidth, the smaller the bias around the edge but the

greater the variance of the smoother; vice versa, the greater the bandwidth, the greater the bias

(around the edge). The kernel smoother either smooths out the edge or undersmooths the flat part

of the estimand. This undesirable feature is shared by all linear estimators as in fact, the optimized

kernel smoother is as good as a linear estimator can be (we will make this claim more precise in

the next section). The poor performance has a simple interpretation: we quote from Donoho and

Johnstone (1998) “linear estimators are based in some sense on the idea of spatial homogeneity of

the estimand.” Here, our example is not spatially homogeneous – having a sharp discontinuity –

and therefore not suited for linear procedures.

What about non-linear procedures? Following Donoho and Johnstone, let us look at a wavelet

thresholding estimator (soft or hard does not matter). We argue that the performance of such an

estimator (for any choice of wavelet basis) satisfies

MSE(f̂WT , f) ≥ C (ε2)1/d. (5.3)

One may think about the wavelet-thresholding estimator as a local smoother where one would be

able to pick the size of the bandwidth adaptively, depending on the spatial inhomogeneity of the

data (Donoho and Johnstone, 1994). (Here, the bandwidth one would certainly select a smaller

bandwidth in a neighborhood of the discontinuity). The result is striking: such a non-linear

procedure offers very little improvement over linear ones.
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In dimension one, wavelets deal remarkably well with spatial inhomogeneities: that is, estimands

that might be discontinuous, spiky, etc. This nice feature is certainly one of the reasons why they

generated and continue to generate so much enthusiasm. In higher dimensions, however, there are

various kinds of spatial inhomogeneities and our example is certainly an important one. It shows

that, in some sense, the ‘wavelet miracle’ that operates in dimension one does not extend to higher

dimensions. Wavelets cannot deal efficiently with objects that exhibit the kind of inhomogeneity

we have just described. Already in dimension 2, this simple example enlightens the difficulties

of wavelet methods in dealing with edges in images. We are allowed to talk about the ‘poor

performance’ of linear or wavelet procedures on this type of object because of the existence of

others with much better estimation properties, as we are about to see.

Now let us consider a simple ridgelet thresholding estimate f̂RT as in (3.7) of the same object.

Then,

MSE(f̂RT , f) = O((ε2)s), ∀ s < 1.

Unlike wavelets, ridgelets adapt very well to linear inhomogeneities. The reason for this remarkable

fact is that the singularity causes highly concentrated or localized effect to the ridgelet represen-

tation, giving only a few a significant coefficients to estimate. Ridgelets are optimal to recover

structures organized along hyperplanes.

Rather than averaging data over isotropic neighborhoods like balls (kernel, wavelet methods),

ridgelet estimates are constructed by averaging the data over strips. For objects like (5.1), it seems

to be a clear advantage if the strip may be positioned along the edge.

5.2 Adaptivity

Let L := {x, uTx− b = 0} be an arbitrary hyperplane and consider a function f such that

‖f‖W s
2 (Rd\L) ≤ C :

that is, f has some kind of regularity away from L but may be discontinuous at L. We recall

that W s
2 is the Sobolev space of square integrable functions whose s-th derivative is also square

integrable. The norm is given by ‖g‖2W s
2

= ‖g‖22 + ‖Dsg‖22. (When s is not an integer, the norm is

given via the Fourier transform ĝ, ‖g‖2W s
2

=
∫
Rd(1 + |ξ|2s)|ĝ(ξ)|2 dξ.)

We can then consider the collection of such templates: i.e., let F(C) be the class defined by

F(C) = {f, ‖f‖W s
2 (Rd\L) ≤ C, for some hyperplane L, and suppf ⊂ [0, 1]d}. (5.4)

It is important to emphasize that the singular hyperplane is not fixed; two elements from F(C)

may be singular along two different hyperplanes.
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We now give a lower bound on the estimation error of linear procedures.

Theorem 5.1 Let RL(ε,F) be the minimax rate where the infimum (3.3) is restricted over linear

procedures. Then, there exists a constant C such that

RL(ε,F) ≥ C (ε2)1/(d+1). (5.5)

This fully justifies our claim (5.2).

Remark. Linear estimation of discontinuous functions has been studied by Korostelev and Tsybakov

(1993)[Page 178] although their estimation problem is different than (5.4). They wish to recover

elements of the form

f(x1, · · · , xd) = f0(x1, · · · , xd) + f1(x1, · · · , xd) 1{xd≥ϕ(x1,··· ,xd−1)},

where ϕ is a smooth function and where we may assume – as we do – that the pieces fi’s i ∈ {0, 1}
belong to some Sobolev ball. This problem is more general than ours since our assumption requires

ϕ to be linear. However, translated to our framework, their lower bound is of order (ε2)1/2 when,

say, the singularity ϕ is C∞ and the fi’s are smooth enough, which is not the correct order (not

sharp), as suggested by Theorem 5.1. Our method is different than theirs as ridgelets play a central

role in the determination of (5.5).

Proof of Theorem. The proof is in two steps. We first argue that the minimax linear rate over the

class F is the same as the minimax linear rate over the convex hull of F ; then, we give a lower

bound on the linear minimax rate of the latter convex hull.

Lemma 5.2 We have

RL(ε,F) = RL(ε,Hull(F)). (5.6)

Proof of Lemma. Let T be a linear procedure yielding estimators of the form f̂ = TY . The classical

bias-variance decomposition states that

MSE(f, f̂) = ‖f − Ef̂‖22 + Varf̂ ,

and since the estimator is linear, the risk can be rewritten as

MSE(f, f̂) = ‖(I − T )f‖22 + ε2‖T‖2HS ,

where ‖T‖HS is the Hilbert Schmidt norm of the operator T (‖T‖2HS =
∑

n |Ten|2 with (en) any

orthobasis of L2[0, 1]d). Now, let g be in the convex hull of F , i.e. g is a finite sum of the form:

g =
∑
i

aifi, fi ∈ F ,
∑
i

|ai| ≤ 1,
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The bias of our linear estimate may be bounded as follows:

‖(I − T )f‖2 = ‖(I − T )(
∑
i

aifi)‖2 ≤
∑
i

|ai|‖(I − T )fi‖2.

The variance term is unchanged and

MSE(g, ĝ) = ‖(I − T )g‖22 + ε2‖T‖2HS
≤ (

∑
i

|ai|)2 sup
i
‖(I − T )fi‖22 + ε2‖T‖2HS

≤ sup
f∈F

MSE(f, f̂).

This last inequality implies the desired result.

We now give a lower bound on the linear minimax rate over the convex hull, which, of course, is the

same as the one over the L2-closure of the convex hull Hull(F). The basic idea is to observe that

rescaled ridgelets of the form ψ(2j(uTj,`x− k)) are in the closure of the convex hull of F . Hence, for

each scale j ≥ 0, we have of the order of 2jd nearly orthogonal elements with L2 norms roughly equal

to 2−j/2. There is a natural lower bound on the linear estimation of orthogonal functions; when

j is chosen appropriately, this lower bound gives (5.5). A rigorous argument involves a delicate

construction whose proof may be found in the appendix.

Lemma 5.3 For any δ > 0, there exist m(δ) orthogonal elements {g`} ∈ Hull(F) satisfying the

following properties:

1. For any 1 ≤ ` ≤ m(δ), ‖g`‖2 = δ, and

2. m(δ) ≥ δ−2d.

We use this lemma to finish the proof of the theorem. To ease notation, we will set Vδ = (g`)1≤`≤m(δ).

We then have

RL(ε,Hull(F)) = RL(ε,Hull(F)) ≥ RL(ε,Vδ)

Now, the linear minimax rate is given by

RL(ε,Vδ) = inf
T

sup
`
‖(I − T )g`‖22 + ε2‖T‖2HS .

There are two cases: either ‖I − T‖22 ≥ 1/2 or ‖(I − T )‖22 < 1/2. In the first case, we bound the

risk of the linear estimator T by the bias term, namely, δ2/2; in the second, we bound the risk by

the variance, ε2‖T‖2HS . In the former case, we will use the upper bound on the bias to get a lower

bound on the variance term, i.e. ‖T‖2HS . Indeed, it is not hard to show that

‖I − T‖22 < 1/2⇒ ‖T‖2HS ≥ m(δ)/2,
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where m(δ) is the cardinality of Vδ. In any event, we have that for any δ,

RL(ε,Vδ) ≥
1
2

min(δ2, ε2m(δ)).

We finish the proof by letting δε = ε1/(d+1). Using the fact that m(δ) is bounded below by δ−2d

gives

RL(ε,Vδε) ≥ C (ε2)1/(d+1).

We trivially conclude that

RL(ε,Hull(F)) ≥ RL(ε,Vδε) ≥ C (ε2)1/(d+1).

The proof of the theorem is complete.

In stark contrast with linear procedures, shrinkage ridgelet estimates attain estimation bounds as

if there were no discontinuity.

In order to give a precise statement, we need to polish the form of our ridgelet shrinkage estimator

(3.7). We will work with a nice ridgelet frame (2.10) (ψi)i∈I such that ψ has enough vanishing

moments and regularity. To simplify the analysis we take ϕ and ψ to be compactly supported.

Hence, at a given scale j, the number of ridgelets that are nonzero on [0, 1]d is bounded by

#{ψi, j(i) = j} ≤ C 2jd,

for some fixed constant C.

To estimate the true ridgelet coefficients θ from our noisy data y (3.4), we consider the diagonal

projection as defined in section 4. Set

I ′ = {i, j(i) ≤ Jε}

and define

θ̂i =

{
ηS(yi, λσi) i ∈ I ′

0 i ∈ I \ I ′
(5.7)

with λ = ε
√

2 log(#I ′) and where we recall that the σi’s are the L2 norms of the ridgelets ψi.

Thus, the estimator (5.7) sets to zero all the coefficients exceeding a given scale and thresholds the

others.

Theorem 5.4 Consider the ridgelet thresholding estimate f̂ (3.7) (with (5.7) as the choice of scalar

nonlinearities). Then,

sup
F
MSE(f̂ , f) ≤ (1 + 2 log(ε−1))(ε2)

2s
2s+d .
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Our estimator gives the optimal rate – up to a logarithmic factor – since there is a lower bound on

the estimation of compactly supported functions with square integrable s-th derivatives. Indeed, if

we let

W(s, C) = {f, ‖f‖W s
2
≤ C , suppf ⊂ [0, 1]d}

be this class, its minimax rate is bounded below as follows:

inf
f̂

sup
f∈W(s,C)

MSE(f, f̂) ≥ c (ε2)
2s

2s+d .

It is quite remarkable that our estimator achieves an error of estimation that is almost (up to the

logarithmic factor) as good as the one that one could obtain if an oracle told us the exact location

of the discontinuity.

The ridgelet shrinkage procedure is entirely data driven: we do not need to know whether or not

there is a singularity or if there is one, where it is. In addition, we do not need to know the degree

of smoothness s of the regression surface away from the singularity. In this sense, the ridgelet

estimator is spatially adaptive and, moreover, adapts to the unknown degree of smoothness.

Proof. Following the argument developed in the previous section, we simply need to study the

sparsity of the ridgelet coefficient sequence.

We apply Lemma 4.3 and the upper bound will result from the following two facts that are proven

in Candes (1999b): first, ∑
i

min(θ2
i , ε

2) ≤ C (ε2)
2s

2s+d ; (5.8)

and, second, ∑
j(i)>Jε

θ2
i ≤ C max(2−2Jεs, 2−Jε). (5.9)

Since the ridgelets are uniformly bounded in L2([0, 1]d), we may as well take the upper bound to

be 1 so that σi ≤ 1 for any i ∈ I. Finally, an application of Lemma 4.3, together with (5.9), gives

E‖θ̂ − θ‖2`2(I) ≤ C
[
1 + 2 log(2Jεd)

] [
ε2 + (ε2)2s/(2s+d)

]
+ C 2−2Jε min(1/2,s).

Suppose that Jε = b2 log(ε−1)c. Then, the approximation term 2−2Jε min(1/2,s) ≤ (ε2)min(2s,1) is

negligible when compared to the leading term (ε2)2s/(2s+d) of the mean-squared error. In short, we

have

E‖θ̂ − θ‖2`2(I) ≤ C log(ε−1)(ε2)2s/(2s+d).

Finally, inequality (3.6) linking E‖θ̂− θ‖2`2(I) and E‖f̂ − f‖22 finishes the proof of Theorem 5.4.
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There are obvious extensions of this result. For instance, one could take finite superposition of

elements from our class of templates F(C) (5.4). Let the regression surface f be of the form

f =
m∑
i=1

aifi,

where m is arbitrary, equal to 10 or 20, say, meaning that our regression surface is smooth away

from 10 or 20 hyperplanes. Now, suppose that we observe f in the presence of noise and apply the

ridgelet shrinkage estimator: the asymptotics is unchanged; namely,

E‖f̂ − f‖22 ≤ C log(ε−1)) (ε2)
2s

2s+d .

Again, we do not need to know how many of these hyperplanes there are nor where they are.

Going towards more generality, there is an infinite dimensional version of these types of results. We

can construct a class of functions whose typical elements are of the form f(x) = 1{uT x−b≥0} g(x)

with g ∈W s
2 .

Definition 5.5 Let SH be the class of functions defined by

SH = {f =
∑

aifi
∑
|ai| ≤ 1, ‖fi‖

W
d+1

2
2 (R2\Li)

≤ C}. (5.10)

The model is meant to represent objects composed of singularities across hyperplanes: typical

elements of our model are smooth away and discontinuous across these same hyperplanes. There

may be an arbitrary number of singularities which may be located in all orientations and positions.

Theorem 5.6 The ridgelet thresholding estimate f̂ (3.7) is asymptotically nearly minimax over

our model SH . We have

sup
SH

MSE(f̂ , f) ≤ (1 + 2 log(ε−1))(ε2)
d+1
2d+1 . (5.11)

Our model is made up of functions that may be discontinuous along an arbitrary and possibly

infinite number of hyperplanes, but the rate estimate still behaves as if they were (d + 1)/2 times

differentiable (in an L2 sense).

Proof of the theorem. We first show that the sum of the absolute values of the ridgelet coefficients

θi of any f ∈ SH is bounded as follows:

sup
j

2j/2
∑

i:j(i)=j

|θi| ≤ C. (5.12)

By convexity, it suffices to show (5.12) for f of the form f = f0 + 1{uT x−b≥0}f1, a fact estabished

in Candes (1999b). In turn, this property implies that the ridgelet sequence is in w`p for 1/p =
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1+1/(2d), or equivalently that
∑

i min(ε2, θ2
i ) ≤ C (ε2)

d+1
2d+1 . The rest of the argument is now similar

to that of Theorem 5.4.

The near-minimaxity follows from the mere observation that the class SH contains W (d+1)/2
2 whose

minimax estimation rate is bounded below by c ε
d+1
2d+1 . This establishes the theorem.

6 A Minimax Theorem

In the previous section, we argued that ridgelets – and, in a broader sense, ridge functions – were

optimal for estimating functions with some special kinds of inhomogeneities, Theorem 5.4 and

Theorem 5.6. This section shows that these results are part of a broader picture. The section is

organized as follows: we first introduce new functional classes based on a new notion of smoothness;

we then show that a simple ridgelet thresholding estimator is asymptotically nearly minimax for

estimating objects from these classes.

6.1 New notion of smoothness

Candes (1998) introduces a family of spaces defined via the properties of the continuous ridgelet

transform: we will say that a function f belongs to the homogeneous ridge space Ṙsp,q for p, q ≥ 1

if f is integrable and

‖f‖Ṙsp,q ≡
(∫ [∫

|Rf (a, u, b)|p dbdu
]q/p da

aq(s+d/2)+1

)1/q

<∞, (6.1)

where Rf (a, u, b) is the ridgelet coefficient of f (2.4) (we recall that du is the uniform measure on

the sphere).

In nonparametric estimation, there has recently been a great deal of interest in studying estimation

procedures over Besov balls, see Härdle, Kerkyacharian, Picard, and Tsybakov (1998) and references

therein. Besov norms measure the smoothness of an estimand f . Roughly, if s is an integer,

‖f‖Bsp,q ≤ C means that f is in some sense s times differentiable. (When s is not an integer, it says

that the [s]th derivative of f has some kind of continuity properties.)

We recall the definition of the Radon transform Rf of an integrable function f (see Deans, 1983

for details)

Rf(u, t) =
∫
uT x=t

f(x) dx.

The quantity (6.1) has a natural interpretation in terms of the smoothness of the Radon transform.

Indeed, for p = q, we have the following equivalence:

‖f‖p
Ṙsp,p
³ Ave

u
‖Rf(u, ·)‖p

Ḃ
s+(d−1)/2
p,p

, (6.2)
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where Ḃs+(d−1)/2
p,p stands for the usual 1-dimensional homogeneous Besov norm. Instead of – clas-

sically – requiring smoothness on the estimand, we require smoothness on the Radon transform.

Roughly speaking, s is associated with the number of derivatives of the Radon transform and,

hence, is interpreted as a degree of smoothness and p, q are parameters that serve to measure

smoothness. We would like to emphasize that this is very different from the classical pointwise

notion of smoothness as we are about to see.

For instance, suppose one is given the function

f(x) = H(x1)(2π)−d/2e−|x|
2/2. (6.3)

From a classical viewpoint, this is not a smooth object: the first derivative is a singular measure. Let

cos θ be the first component of the unit vector u in the canonical basis, then the Radon transform

of f is given by

Rf(t, u) = e−t
2/2Φ(t cos θ/| sin θ|),

where Φ is the cumulative distribution function of a standard normal variable Φ(t) =
∫ t
−∞(2π)−1/2e−y

2/2 dy.

Except for values of (t, θ) in the neighborhood of the singular point (0, 0), the Radon transform of

f is extremely smooth. In fact, according to our definition it has about (d+ 1)/2 derivatives as one

can show that f ∈ Rs1,1 for every choice of s < (d+ 1)/2 (Candes, 1998).

In fact, typical elements of Rsp,q (at least when p < 2) look like our mutilated gaussian (6.3), in

that they exhibit the same kind of spatial inhomogeneities. For instance, the class SH of mutilated

functions that we defined in Section 5 almost corresponds to one of these spaces. Indeed, we have

R
(d+1)/2
1,1 (C1) ⊂ SH ⊂ R(d+1)/2

1,∞ (C2), (6.4)

which means that membership to SH is roughly equivalent to membership to R(d+1)/2
1,q (1 ≤ q ≤ ∞).

Therefore, we should really think about these spaces as describing the kind of spatial inhomo-

geneities we introduced in the previous section.

Kernel smoothing techniques are well adapted to some functional classes and wavelet methods to

others; likewise, we believe that ridge function estimation (and approximation) is especially well

suited for objects having the smoothness displayed by (6.1) or (6.2). The remainder of this section

is devoted to a precise formulation of this heuristics.

6.2 A minimax theorem

Let Rsp,q(C) be the ball of radius C: that is, the collection of elements supported in the unit cube

[0, 1]d whose norm (6.1) is bounded by a fixed constant C. We have the following result:
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Theorem 6.1 Consider the class Rsp,q(C) and assume s > d(1/p − 1/2)+, a condition that guar-

antees that the class can be consistently estimated with an L2 loss.

• (i) There is a lower bound on the minimax rate,

Rε(Rsp,q(C)) ≥ K(ε2)
2s

2s+d , (6.5)

where the constant K depends at most upon s, p, q.

• (ii) A simple thresholding estimator (3.7) achieves the optimal rate within a log-like factor;

i.e.,

sup
f∈Rsp,q(C)

E‖f̂ − f‖22 ≤ K ′ log(ε−1)(ε2)
2s

2s+d , (6.6)

where again K ′ might depend on s, p, q.

It is possible to get sharper lower bounds and show that a logarithmic factor is necessary for a

certain range of the indices. However, we do not attempt to go that far in this paper.

6.3 Lower Bounds

The proof of the lower bound is classical and relies on a well-known result, namely, Assouad’s lemma

(Korostelev and Tsybakov, 1993)[Page 69]: that is, we specify a subproblem and use Assouad’s

lemma to calculate its difficulty. The idea is as follows: suppose that one can find m orthogonal

functions (g`)1≤`≤m with ‖g`‖L2 = δ such that

H(δ, {g`}) ≡ {f =
m∑
`=1

ξ`gl, ξ` ∈ {−1, 1}} ⊂ Rsp,q(C);

that is, by taking a functional analysis viewpoint, one can find a cube of sidelength δ and dimension

m (2m vertices) embedded in the functional ball Rsp,q(C). Our subproblem is the same estimation

problem but restricted to the cube H (the functions to be recovered are the vertices of H). Let us

consider the minimax risk Rε(H) of this specific subproblem which urns out to be easily calculated

as it is a direct consequence of Assouad’s lemma.

Lemma 6.2 Let H(ε, {g`}) be the orthogonal hypercube of dimension m and sidelength ε defined

as above (δ = ε). Then

Rε(H) ≥ Φ(−1/2)/4mε2, (6.7)

where Φ is the cumulative distribution function of the standard normal distribution.
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As emphasized, the lemma is a variation on Assouad’s lemma; moreover we would like to point out

that our formulation is not new as it may be found in Donoho and Johnstone (1995).

Proof of Lemma. To find the minimax risk of (3.1) when f is assumed to be of the form f =∑m
`=1 ξ`gl, with ξ` ∈ {−1, 1}, we first note that we may only consider estimators that lie in the

span of the g`’s; this fact follows from the simple following observation: by letting P be the

orthogonal projector onto that span, for any estimator we have

‖P f̂ − f‖22 ≤ ‖f̂ − f‖22.

Thus, the problem reduces to estimating the ξ`’s from the noisy observations y` = 〈Y, g`〉, where

y` = ε2ξ` + ε2z`,

or, equivalently, from the rescaled noisy observations ỹ,

ỹ` = y`/ε
2 = ξ` + z`, (6.8)

and where, of course, z`
i.i.d.∼ N(0, 1). Observe now that for an estimator of the form f̂ =

∑
` ξ̂`g`,

we have ‖f̂ − f‖22 = ε2
∑

`(ξ̂` − ξ`)2. Then, a rescaling argument gives that the minimax mean-

squared-error Rε(H) equals ε2 times the minimax mean-squared error of the problem (6.8); that

is

Rε(H) = inf
f̂

sup
H
E‖f̂ − f‖2L2[0,1]d = ε2 inf

ξ(ỹ)
sup

ξ∈{−1,1}m
E
∑
`

(ξ̂` − ξ`)2.

The latter problem (6.8) is now classical and a lower bound for its minimax mean-squared-error is

Φ(−1/2)m. It is interesting to note that (6.8) has a strong flavor of an hypothesis testing problem

as one tries to distinguish which of the 2m hypotheses ξ ∈ {−1, 1}m is the correct one.

The previous lemma will give the lower bound of estimation if one can find a sequence of ‘fat’

hypercubes H(ε,m(ε)) yielding a sharp asymptotic lower bound. The lower bound (6.5) follows

from the technical lemma:

Lemma 6.3 For any δ > 0, there exists a hypercube H(δ, {g`}) ⊂ Rsp,q(C) of sidelength δ and

dimension m(δ) ≥ Kδ−1/(s/d+1/2).

The proof of this technical lemma is given in the appendix. Again, a slight perturbation of properly

rescaled ridgelets builds up the vertices of this hypercube.

We now finish the proof of the first part of Theorem 6.1:

Corollary 6.4 We have a lower bound on the minimax risk

Rε(Rsp,q(C)) ≥ c (ε2)
2s

2s+d . (6.9)
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Proof of Corollary. We clearly have

Rε(Rsp,q(C)) ≥ Rε(H) ≥ Φ(−1/2)/4m(ε) ε2,

and the lower bound follows since m(ε) might be chosen to be greater than Kε−1/(s/d+1/2).

6.4 Upper Bounds

The proof of the upper bound closely follows the concepts presented in section 4. For convenience,

let us take exactly the same estimator as the one introduced at the beginning of section 5.2; i.e.,

θ̂i =

{
ηS(yi, λσi) j(i) ≤ Jε
0 j(i) > Jε

,

(see section 5.2 for the value of the parameter λ).

We suppose that the parameters s, p, q are fixed with s > d(1/p− 1/2)+ and we consider the image

of Rsp,q(C) through the analysis operator f 7→ (θi(f))i∈I , θi(f) = 〈f, ψi〉: that is,

Θ = {θ = (θi(f))i∈I , ‖f‖Rsp,q ≤ C}.

The upper bound will result from the following fact that is proven in Candes (1999c): for any

function f ∈ Rsp,q(C), we have

‖θ‖rsp,q :=
∑
i

∑
j≥0

(2jσ
∑
j(i)=j

|αi|p)q/p
1/q

≤ C ‖f‖Rsp,q . (6.10)

Formally, ‖θ‖rsp,q has the same structure than a discrete Besov norm, except that the sequence θ

measures a radically different behavior.

Among other things, the finiteness of ‖θ‖rsp,q for θ ∈ Θ has two consequences: first for any ε > 0,

we have ∑
i

min(ε2, θ2
i ) ≤ ε

2s
2s+d ; (6.11)

and second, ∑
j(i)>Jε

θ2
i ≤ C 2−2Jεs′/d, (6.12)

with

s′ =

{
s p ≥ 2

s− d(1/p− 1/2) p < 2
.
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Since the ridgelets are uniformly bounded in L2([0, 1]d), the sparsity of the coefficient sequence

gives ∑
j(i)≤Jε

θ2
i ∧ ε2σ2

i ≤ C
∑

j(i)≤Jε

θ2
i ∧ ε2 ≤ C (ε2)2s/(2s+d).

(Compare with Lemma 2 in Donoho (1993).)

Finally, an application of Lemma 4.3 together with (6.12) gives

E‖θ̂ − θ‖2`2(I) ≤ C
[
1 + 2 log(2Jεd)

] [
ε2 + (ε2)2s/(2s+d)

]
+ C 2−2Jεs′ .

Suppose that Jε = b2α log(ε−1)c with α chosen large enough so that 2αs′ > 2s/(2s+ d). Then, the

approximation term 2−2Jεs′ ≤ (ε2)2αs′ is negligible when compared to the leading term (ε2)2s/(2s+d)

of the mean-squared error. To summarize, we have

E‖θ̂ − θ‖2`2(I) ≤ C log(ε−1)(ε2)2s/(2s+d),

and, finally, inequality (3.6) allows us to conclude that the worst case error of our simple threshold-

ing estimator comes within a possible logarithmic factor of the minimax risk. The proof of Theorem

6.1 is complete.

We would like to close this subsection by pointing out that a hard thresholding rule, similar in every

aspect to the soft thresholding rule presented above but for the substitution of the nonlinearity ηST
with

ηHT (y, λ) = y 1{|y|≥λ}, (6.13)

would give exactly the same asymptotic performance.

6.5 Adapting to the unknown degree of smoothness

A remarkable feature of the ridgelet shrinkage estimator is its spatial adaptivity: the same estimator

is simultaneously asymptotically nearly minimax over a wide range of smoothness classes Rsp,q. In

other words, no prior information on the parameters s, p, q is needed to obtain near-minimaxity;

the estimator adapts to the unknown smoothness of the estimand.

A simple mathematical statement may clarify this point. Let ν = (s, p, q) denote the parameters

describing the smoothness scale Rsp,q, and Fν(C), the corresponding ball of radius C. We have just

shown that there is an estimator such that

sup
f∈FV (C)

E‖f̂ − f‖22 ≤ K(ν)C log(ε) (ε2)2s/(2s+d).
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Suppose now that we are given a subset V0 of the parameter space satisfying s−d(1/p−1/2)+ ≥ s0

for any ν ∈ V0 and some s0 > 0. Then, there is a ridgelet thresholding estimator f̂ with the

property

sup
FV (C)

E‖f̂ − f‖22 ≤ K0C log(ε) (ε2)2s/(2s+d), ∀ν ∈ V0, (6.14)

for some constant K0 depending only on V0.

7 Curved Singularities

As in Chapter 6, one may ask whether one can curve the singularity, still preserving the nice

theoretical estimation bounds of ridgelet thresholding estimators. In statistics, projection pursuit

regression and kernel regression are frequently used for estimating smooth multivariate functions

from noisy observations. It is true that in some cases, projection-based approaches might be more

accurate, as exemplified in the previous sections. In particular, there has been a large debate in the

literature of statistics about their relative performances when the underlying estimand is radial,

see Donoho and Johnstone (1989), for example. We will follow an approach similar to the one

developed in section 5 by studying a simple example exhibiting a general phenomenon.

Let f be the radial function defined, as follows:

f(x) = 1{|x|≤1/2}e
−|x|2/2, (7.1)

that is, a ‘radially mutilated dome.’ This surface is smooth away from the sphere |x| = 1/2, but

singular across the latter sphere.

For kernel smoothing and wavelet wavelet thresholding procedures, the story is similar to the one

presented in the previous section. That is, the risks scale in the same way as before; i.e.,

MSE(f̂KS , f) ≥ C (ε2)1/(d+1)

for a linear smoother with any bandwidth, and

MSE(f̂WT , f) ∼ (ε2)1/d

for any reasonable wavelet thresholding estimate.

Now, let us consider the risk of a ridgelet thresholding estimator. Using the results presented

section 4, we argue that

MSE(f̂RT , f) ∼ (ε2)1/d.
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The reason is that the ridgelet transform of (7.1) is not sparse. Candes (1998)[Chapter 6] proves

that ∑
i

min(θ2
i , ε

2) ≥ C (ε2)1/d, (7.2)

which supports the claim as discussed in section 4.

This result is doubly surprising: first, it is spectacular that two distinct methods corresponding

to radically different procedures give the same asymptotic estimation bounds. Of course, the

duality existing between ridgelet and wavelet estimation is essentially the same as the one existing

between projection pursuit regression and nonlinear kernel regression with an adaptive choice of

bandwitdth: the non-linear ridgelet procedure estimates the regression surface by a superposition

of ridge functions (chosen after averaging the noisy data over strips) while the wavelet estimator is

based on a superposition of bumps (obtained after averaging the data over balls). And yet, both

estimate the singular regression surface with the same degree of accuracy!

One might argue that the limit of performance is due not so much to the ridge function approach

but to the specificity of the ridgelet shrinkage method. After all, other estimators with better

estimation bounds may exist, even though this is unlikely. Indeed, to obtain good estimation

bounds, finite linear combinations of ridge functions should provide a good model for objects like

(7.1), meaning that one would need only a few number of ridge functions to approximate the

true regression surface. The problem is that objects with curved structure like (7.1) are not well

approximated by ridge functions. Preliminary results about this heuristics may be found in Candes

(1998)[Chapter 7].

Second, this negative result clearly shows the limits of projection-based approaches. Superficially,

it may be seen as a curse for it disproves a widespread and recurrent claim in the literature arguing

that neural networks and related prediction methods are free from the curse of dimensionality. In a

nutshell, the result says that unless the regression surface is s× d times differentiable, you cannot,

in general, hope for a mean-squared error of order (ε2)2s/(2s+1).

8 Numerical experiments

A fast algorithm has been developed to code up the ridgelet transform: the details of the algorithm

are not yet published. At the present stage, the algorithm works in the case of the dimension

d = 2. The algorithm takes data on a cartesian grid and computes “pseudo-ridgelet” coefficients.

Here, the discrete transform is not orthonormal but provides a frame of redundancy factor 2 and is

numerically tight. Finally, this discrete transform has low complexity since it runs in O(n2 log(n))

flops for an n × n image. Of course, there is an associated inverse transform that reconstructs
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an image from the data of its “pseudo-ridgelet” coefficients; its order of complexity is of the same

order as the one of the forward transform. The major part of the work described in this paragraph

has been done by David Donoho.

It follows that the local ridgelet transform can obviously be computed in O(n2 log(n)) flops and,

hence, the method we have described in this paper appears to be very attractive from a practical

point of view.

Let f be the half dome introduced earlier, namely,

f(x, y) = 1{x+2y>0}e
−4(x2+y2).

The image of this function is stored as an array of 512 by 512 pixel values and is represented on

Figure 2.

Figure 2 presents an application of ridgelets to the problem of recovering images from noisy data.

The edge and the flat part of the image are well recovered from the data. There are not any visible

artifacts near the edge.
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Hard ridgelet thresholding estimate, mse = 105
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[Ridgelet Estimation]

Figure 2: The original image is presented together with its noisy version. The

last figure represents our estimate obtained after thresholding the noisy ridgelet

coefficients. Both the edge and the flat part of the image are well recovered.

The next figures (Figures 3 and 4) display the successive approximations of the noiseless object f

as they provide some insights about the nature of the method. The first ridgelet to enter into the

approximation is the one with the largest coefficient; the second is the one with the second largest,

and so on. The first selected ridgelets are nicely aligned with the edge.
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Figure 3: The original image is presented together with its approximations using

successively 2, 32 and 64 coefficients. It is interesting to observe that the first

ridgelets that are selected are aligned with the edge: they ‘pick up’ the edge.
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Figure 4: The original image is presented together with its approximations using

successively 128, 256 and 512 coefficients. With only 128 coefficients (compression

ratio of order 1/2000), the reconstruction of the edge is near-perfect.

9 Discussion

The point of this paper has been the quantitative study of the properties of estimation by finite

linear combinations of ridgelets. In contrast to existing approaches based on stepwise addition of

elements, we suggest a new approach based on a new tool, the ridgelet transform: expanding the

noisy data into a ridgelet series and simply thresholding the noisy coefficient. We have shown that

this is a powerful method for statistical estimation. Roughly speaking, one can read the estimation

bounds from the sparsity of the ridgelet coefficients. We have identified many situations where the
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ridgelet shrinkage is optimal and, in addition, we have also been able to study its limitations.

9.1 Choice of model

We would like to stress that the framework of all of our quantitative estimation results is that of

the continuous white-noise model (3.1) of Ibragimov and Hasminskii (1981). Although this model

is of common use in the literature, one may object that this model serves the author’s purpose.

There could be two main objections: first, it is not discrete while in practice one is presented

discrete data; and, second, the implicit assumption is that the setting is in some sense uniform as

the performance is evaluated with respect to the Lebesgue measure. Both of these objections are

well founded and we shall attempt to address them both.

Discrete data. We present the situation in dimension two: suppose we observe noisy measurements

yi,j = f̃(i, j) + σzi,j ,

where zi,j
i.i.d.∼ N(0, 1) is a Gaussian noise term. In a lot of physical devices, the f̃(i, j)’s are gridded

data of level-pixel averages

f̃(i, j) = Ave{f | [i/n, i+ 1/n)× [j/n, j + 1/n)} 0 ≤ i, j < n.

We wish to recover f with small per-pixel mean-squared error MSE(f̂ , f) = En−2
∑

i,j(f̂(i, j) −
f̃(i, j))2. The problem of recovering objects with edges from gridded data is not trivial (see Ko-

rostelev and Tsybakov, 1993, for example). However, the author is confident that a careful analysis

will give discrete versions of Theorems 5.4 and 6.1. We hope to report on this in later papers.

(Precise bounds will probably depend on the implementation that is chosen.) We would like to

point out that although the benefit of wavelet methods was pointed out quite a while ago, it is

only fairly recently that results have been transported from the continuous white-noise model to

equispaced regular designs.

Regular setting. Even though one may expect to see ridgelet algorithms enjoy nice estimation

bounds with data given on a regular grid, there does not seem to be a quick answer to the problem of

dealing with irregularly spaced (heterogeneous) data points. This is indeed a fairly classical problem

that a lot of theoretically motivated methods have to deal with. For instance, it is not always clear

how to use the Fast Fourier transform or Fast wavelet transforms to handle nonequispaced data

points on the real line. Although these issues have been around for a long time, their careful study

is fairly recent Silverman, 1999.

As we can see, the issues that we raised are shared by many popular methods in current use and

are far from being the sole appanage of ridgelet procedures. Practical work on those issues will

undoubtedly be of great importance. The author hopes to report on some empirical work in a later

paper.
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9.2 Curved edges

Finally, ridgelets are optimal for estimating objects with singularities across hyperplanes (Section

5), but they fail efficiently to estimate objects with singularities across curved hypersurfaces (Section

7).

One can adapt to this situation by localizing the ridgelets. We divide the domain in question into

squares and smoothly localize the function into smooth pieces supported on or near those squares

either by partition of unity or by smooth orthonormal windowing. We then apply ridgelet methods

to each piece. The idea is that, at sufficiently fine scale, a curving singularity looks straight, and so

ridgelet analysis – appropriately localized – works well in such cases. This strategy has been fully

developed in Candes (1999a) and is shown to provide better estimation bounds than (7.2).

A more promising approach is based on a new transform, namely, the curvelet transform pioneered

by Candes and Donoho (1999). In two dimensions, the curvelet transform combines ideas from

ridgelet and wavelet analysis to provide optimal representations of smooth functions with twice

differentiable singularities. All of these refinments are grounded on the work presented in this

paper.

9.3 A last word

In this paper, we presented the mathematical foundations and some early numerical experiments

of a new approach. However, the previous comments made clear that this work opens up many

challenging questions and, therefore, it should only be interpreted as a starting point for further

investigation.

10 Appendix

In this appendix, we will give rigorous proofs of some hypercube embedding results (Lemma 5.3

and 6.3) needed to support the claims about lower rates of convergence (section 5 and 6). Theorem

6.3 is proved in the author’s unpublished thesis and is reproduced here, with the argument of an

intermediate technical result removed, however.

It is important to note that the proof of the existence of lower bounds of estimation does not need to

be constructive. This observation greatly simplifies our argument. Interestingly, the lower bounds

involve properties of packing sets of the sphere: for a fixed ε > 0, how can we distribute points on

the sphere such that balls of radius ε and centered at these points don’t overlap? The maximum

number of points we can distribute is called the packing number. Again, there is a considerable

literature (Conway and Sloane, 1988) on this matter that the reader can refer to. In the sequel, we
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shall only make use of trivial facts about this packing problem.

Let u be uniformly distributed on the unit sphere. Then, for any other unit vector u′, the density

of u1 = u · u′ is given by

f(u1) = cd(1− u2
1)(d−3)/2,

where cd is a renormalizing constant. A simple change of variables formula then gives the density

of the tangent v = u · u′/
√

1− (u · u′)2 between the vectors u and u′, namely,

f(v) = c′d(1 + v2)−d/2. (10.1)

We now introduce discrete packing sets on the sphere with properties mimicking the continuous

ones listed above. In all that follows, j0 will denote a nonnegative integer whose value will be

decided later. For a fixed j ≥ j0, let εj = 2−(j−j0) and let Sj be a set of points on the sphere (u`)

satisfying the following properties:

1. ∀u`, u`′ ∈ Sj , ‖u` ± u`′‖ ≥ εj ,

2. B1 ε
−(d−1)
j ≤ |Sj | ≤ B2 ε

−(d−1)
j , and

3. for any u ∈ Sd−1, and all 0 ≤ m ≤ j − j0,

|{u`, 2m−1 ≤ |u · u`|
(1− (u · u`)2)1/2

≤ 2m}| ≤ B2 ε
−(d−1)
j

∫
2m−1≤|v|≤2m

dv

(1 + v2)d/2

In the above expressions, the constants B1 and B2 can be chosen to be independent of εj .

Let v`,`′ = u` · u`′(1− (u` · u`′)2)−1/2 be the absolute value of the tangent between u` and u`′ . We

remark that the first property implies that

{u`′ ,
|u` · u`′ |

(1− (u` · u`′)2)1/2
≥ ε−1

j } = {u`}.

This fact is a mere consequence of

‖u`′ ± u`‖2 = 2(1± u` · u`′).

Indeed, suppose for instance that v`,`′ ≥ ε−1
j . Then,

‖u`′ − u`‖2 = 2

(
1− v`,`′

(1 + v2
`,`′)

1/2

)
= 2

1
(1 + v2

`,`′)
1/2(v`,`′ + (1 + v2

`,`′)
1/2)
≤ 1

(1 + v2
`,`′)

.

Therefore, v`,`′ ≥ ε−1
j implies ‖u`′ − u`‖ < εj . It then follows from the first property that this is

equivalent to ` = `′. The argument is identical in the case v`,`′ ≤ −ε−1
j .
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To further simplify the analysis, suppose ψ ∈ S(R) compactly supported supp ψ ⊂ [−1/2, 1/2]

and has a sufficiently large number of vanishing moments. We normalize ψ such that ‖ψ‖2 = 1.

Further, let w ∈ C∞0 (Ωd) be a radial window such that 0 ≤ w ≤ 1 and w(x) = 1 for any x with

‖x‖ ≤
√

3/2. We now consider the set Aj of windowed ridgelets at scale j

Aj = {f`,k(x) = 2j/2ψ(2ju` · x− k)w(x), u` ∈ Sj , k ∈ Z and |k|2−j ≤ 1/2}. (10.2)

Finally, we will assume j ≥ 2 so that 1/2 + 2−j/2 ≤
√

2/2; from our assumptions it follows that

supp f`,k ⊂ {x, |u` · x| ≤
√

2/2} for any f`,k in Aj .

We show that if j0 is large enough, then the elements of Aj are “almost” orthogonal. That is, we

prove the following result:

Lemma 10.1 The cardinality of Aj is bounded below by

#Aj ≥ C 2jd.

Next, the elements of Aj satisfy the following two properties:

(i) there is a constant cd (only depending upon the dimension d) s.t.

∀ f ∈ Aj , ‖f‖2 ≥ cd, (10.3)

(ii) and if j0 is chosen large enough,

∀ f ∈ Aj ,
∑

g∈Aj ,g 6=f
|〈f, g〉| ≤ cd

2
. (10.4)

Proof of Lemma. The norm of f`,k being clearly invariant by rotation (w radial), one can assume

that u` = e1, with e1 being the first vector of the canonical basis of Rd. We have∫
2j |ψ(2j(x1 − k2−j)) w(x)|2 dx

≥
∫
|x1|≤

√
2/2

∫
x2

2+...x2
d≤(1/2)2

2j |ψ(2j(x1 − k2−j)) w(x)|2 dx1dx2 . . . dxd

≥
∫
|x1|≤

√
2/2

2j |ψ(2j(x1 − k2−j))|2dx1

∫
x2

2+...x2
d≤(1/2)2

1 dx1dx2 . . . dxd

= ‖ψ‖22 cd = cd,

where cd might be chosen to be the volume of a d− 1 dimensional ball of radius 1/2. This proves

(i).

Before proceeding further, observe that if 0 < η ≤ ε ≤ 1, x ∈ R, y ∈ R, and δ > 0 we have∑
k∈Z

(1 + |x− εk|)−1−δ(1 + |y − ηk|)−1−δ ≤ Cδε−1(1 + |y − xηε−1|)−1−δ. (10.5)
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By construction, it is pretty clear that the supports of ψ(2ju` · x− k) and ψ(2ju` · x − k′) do not

overlap when k 6= k′. Therefore, ∑
k′,k′ 6=k

|〈f`,k, fi,`′〉| = 0.

Next, an application of Lemma 10 from Candes (1998) when u` 6= u`′ shows that one can find a

constant C1(d) depending on d, ψ and w such that,

|〈f`,k, f`′,k′〉| ≤ C1(d) 2−j(2d+1)(1 + v2
`,`′)

2d+1
2 (1 + 2−j |v`,`′k − (1 + v2

`,`′)
1/2k′|)−2.

Now, it follows from (10.5) that∑
k′

|〈f`,k, f`′,k′〉| ≤ C2(d) 2−j(2d+1)(1 + v2
`,`′)

2d+1
2 2j(1 + v2

`,`′)
−1/2

= C2(d) 2−2jd(1 + v2
`,`′)

d,

for some new constant C2(d), depending only on d, ψ and w. Summing over u`′ (u`′ 6= u`) and

making use of the third assumption on the u`’s gives (recall εj = 2−(j−j0))∑
f`′,k′∈Aj ,f`′,k′ 6=f`,k

|〈f`,k, f`′,k′〉| =
∑

u`′ ,u`′ 6=u`

∑
k′

|〈f`,k, f`′,k′〉|

≤ C2(d) 2−2jd
j−j0∑
m=0

(1 + 22m)d|{u`′ , 2m−1 ≤ |v`,`′ | ≤ 2m}|

≤ C2(d) 2−2jdB2ε
−(d−1)
j

j−j0∑
m=0

(1 + 22m)d
∫

2m−1≤|v|≤2m

dv

(1 + v2)d/2

≤ C3(d) ε−(d−1)
j 2−2jd

j−j0∑
m=0

2m(2d+1−d)

≤ C4(d) ε−(d−1)
j 2−2jd2(j−j0)(2d−(d−1))

= C4(d) 2−j02d,

where again C4(d) is a new constant C(d, ψ,w). (Notice that we have sacrificed exactness for

synthetic notations: in the second line of the array, read |{u`′ , 0 ≤ |v`,`′ | ≤ 1}| instead of |{u`′ , 2`−1 ≤
|v`,`′ | ≤ 2`}| when the index ` equals 0.) Therefore, by choosing j0 large enough, one can make sure

that the quantity Cd 2−j02d is dominated by cd, which proves (ii).

The next lemma is proved in Candes (1998).

Lemma 10.2 First, the elements f`,k satisfy

‖f`,k‖Rsp,q ≤ C 2js2jd(1/2−1/p).
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Second, let C the parallelepiped be defined by

C = {f, f =
∑
`,k

ξ`,kf`,k, |ξ`,k| ≤ 1}. (10.6)

Then, for any f in C and triplet s, p, q; s > 0, 0 < p, q ≤ ∞, we have

‖f‖Rsp,q ≤ C 2js2jd/2,

where the constant C depends at most on s, p, q, ψ, w and the dimension d.

Note that the previous lemma shows how to construct a full parallelepiped embedded in Rsp,q.

However, in view of Lemma 6.3 one needs to construct a cube. The next lemma shows how to

orthogonalize our parallelepiped.

Lemma 10.3 Suppose we have n vectors {fi}1≤i≤n in a Hilbert space such that for all 1 ≤ i ≤ n

(i) ‖fi‖ = 1,

(ii)
∑

j 6=i |〈fi, fj〉| ≤ 1− δ < 1.

We consider the set C = {
∑n

i=1 yifi, ‖y‖∞ ≤ 1}. Then there exists a hypercube H of sidelength δ

that is included in C.

Proof of Lemma. Let us consider the symmetric matrix G defined by Gi,j = 〈fi, fj〉. Applying the

Gershgorin Theorem, we deduce from the hypotheses (i) and (ii) that all the eigenvalues of G must

be greater or equal to δ. Therefore G is a positive definite matrix and we can talk about H = G−1/2.

It is an easy exercise to see that the collection of vectors {ei}1≤i≤n defined by ei = Hfi is indeed an

orthogonal basis of span({fi}1≤i≤n) (see Meyer, 1992, Page 25 for a proof.) Furthermore, a trivial

fact states that ∑
i

xiei =
∑
i

x′ifi whenever x′ = Hx.

Thus the embedding problem becomes: show that ‖x‖∞ ≤ δ =⇒ ‖Hx‖∞ ≤ 1. This requires

nothing but to prove that the norm of H, as an operator from `∞ → `∞, is bounded by δ−1.

Recall,

‖H‖(`∞,`∞) = sup
i

∑
j

|Hi,j |.

We now derive an upperbound of ‖H‖(`∞,`∞). We have

H =
1
π

∫ ∞
0

(G+ λI)−1λ−1/2dλ
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(see Meyer (1992) for a justification of this fact). The previous relationship implies that

‖H‖(`∞,`∞) ≤
1
π

∫ ∞
0
‖(G+ λI)−1‖(`∞,`∞)λ

−1/2dλ.

Now G = I −F , G+λI = (1 +λ)I −F = (1 +λ)(I − (1 +λ)−1F ). The standard inversion formula

for matrices (Neuman series) states

(G+ λI)−1 = (1 + λ)−1(I +
∑
k≥1

(1 + λ)−kF k),

which gives

‖(G+ λI)−1‖(`∞,`∞) ≤ (1 + λ)−1(‖I‖(`∞,`∞) +
∑
k≥1

(1 + λ)−k‖F k‖(`∞,`∞))

≤ (1 + λ)−1(1 +
∑
k≥1

(1 + λ)−k‖F‖k(`∞,`∞))

≤ (1 + λ)−1 1
1− ‖F‖(`∞,`∞)

.

Finally,

‖H‖(`∞,`∞) ≤
1
π

∫ ∞
0

(1− ‖F‖(`∞,`∞))
−1(1 + λ)−1λ−1/2dλ = (1− ‖F‖(`∞,`∞))

−1.

By assumption we have ‖F‖(`∞,`∞) ≤ 1 − δ implying ‖H‖(`∞,`∞) ≤ δ−1, which is precisely what

needed to be proved.

Lemma 6.3 is now a mere consequence of the three preceding preparatory lemmas.

As far as the linear estimation is concerned, Lemma 5.3 essentially follows from Lemma 10.2 and

(6.4). Indeed, chasing definitions, the closed convex hull Hull(F) contains SH which in turn

contains a ball of R(d+1)/2
1,1 . Hence, it is sufficient to prove the appropriate embedding in a ball of

R
(d+1)/2
1,1 . By Lemma 10.2, we have

C = {f, f =
∑
`,k

ξ`,kf`,k,
∑
|ξ`,k| ≤ 1} ⊂ {f, ‖f‖

R
(d+1)/2
1,1

≤ C 2j/2}.

We use the same orthogonalization procedure as in Lemma 10.3 and conclude that one can construct

a set of orthogonal functions g`,k (constructed in the same way as in the proof of Lemma 10.3) such

that

C′ = {f, f =
∑
`,k

ξ`,kg`,k,
∑
|ξ`,k| ≤ 1} ⊂ C ⊂ {f, ‖f‖

R
(d+1)/2
1,1

≤ C 2j/2}.

The proof of this fact is identical to that of Lemma 10.3; keeping the notation of this lemma, one

needs to check that the norm of H, as an operator from `1 → `1 now, is bounded by δ−1. We recall

that

‖H‖(`1,`1) = sup
j

∑
i

|Hi,j |,
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and the desired bound on the norm is proved in the same way as before.

A simple rescaling finally gives Lemma 5.3 (the quantity 2−j/2 playing the role of δ in the statement

of this lemma).
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