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ABSTRACT

This paper presents a prototype of a simulation model based on cellular automata (CA), and multi criteria evaluation,
integrated with Geographic Information System (GIS). Multi criteria evaluation procedure is used to derive behavior-oriented transition
rules. The CA model is built within a grid-GIS system of ARC/INFO GIS using arc macro language to facilitate easy access to GIS
databases for constructing the constraints. A suitability-based cellular automata model has been developed to simulate land use change
dynamics through the concepts of ‘probability of happening of the dynamic phenomenon’ and ‘suitability of the land for the dynamic
phenomenon’. Land degradation is the dynamic phenomenon that has been modeled in the present study. It can be used as a useful

planning tool to test the effects of different land use change scenarios.

1. INTRODUCTION

Geographic Information Systems (GIS) provide rich
spatial databases but have been traditionally static. The
coupling of dynamic models to GIS provides an insight to the
evolution of spatial phenomena as discussed by Grossman and
Eberhardt (1992). Differential equations and partial differential
equations have been the mathematical tools of choice for most
of the dynamic models that have been developed. Toffoli
(1984) and Toffoli and Margolus (1987) proposed cellular
automata models to replace differential equation models.

The theory of cellular automata was first introduced
by John (1966). One of the best known and pioneering studies
in this area was done by John et al. (1982), Gardener (1974),
which emerged in Conway’s Game of life. While this work
was essentially abstract, it demonstrated that the repeated
application of very simple rules to some random initial state
could generate interesting, and recurring patterns as the state of
the system evolved. In recent years they have been
increasingly used in the simulation of complex systems such as
biological reproduction, chemically self-organizing systems,
propagation phenomenon, and human settlements. A series of
urban models based on CA techniques have been reported
(Batty and Xie, 1994; White and Engelen, 1993; Wu 1998; Li
and Yeh, 2001). There are numerous studies on the detection
of land use change using remote sensing and GIS (Howarth
1986, Jensen et al. 1995, Li and Yeh, 1998). However, there is
a general lack of studies on the simulation of land use changes
because of their complexities. Lo and Xiaojun (2002) have
studied the drivers of land use / land cover changes in Atlanta
using remote sensing data and employed a process-based CA
model to simulate the urban growth and landscape changes. Li
and Yeh (2002) presents a new method to simulate the
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evolution of multiple land uses based on the integration of
neural networks and cellular automata using GIS.

Traditionally GIS, means a system capable of
storing, manipulating, analyzing and displaying spatial data. It
lacks the ability to model a dynamic phenomenon in spatial-
temporal domain. But it can act as a platform on which further
modeling capabilities can be built. In the present study, an
attempt has been made to enhance the spatial modeling
capability of a GIS to address spatial dynamic modeling
problem, through Cellular Automata and Multi-Criteria
Evaluation procedures. A suitability-based cellular automata
model has been developed, which can evolve an organized
global pattern from locally defined behavior, because of the
interaction between a site and its neighborhood. State
transitions are governed by transition rules, which are
universally applied and are defined through multi-criteria
evaluation procedures. This can act as a generic framework,
which can handle any kind of spatial dynamic phenomenon.
The method has been tested and evaluated by modeling land
degradation process.

2. METHODOLOGY

2.1 Cellular Automata

A Cellular Automata system usually consists of four
elements — cells, states, neighborhoods and rules. Cells are the
smallest units, which manifest adjacency or proximity. The
state of a cell can change according to transition rules, which
are defined in terms of neighborhood functions and other
suitability criteria. CA are cell-based methods that can model
two-dimensional space. Because of this underlying feature, it
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becomes easy to use CA to simulate land use change, urban
development and other changes of geographical phenomena.

Most current GIS techniques have limitations in
modeling changes in the landscape over time, but the
integration of CA and GIS has demonstrated considerable
potential (Itami 1988, Deadman et al. 1993). The limitations of
contemporary GIS include, its poor ability to handle dynamic
spatial models, poor performance for many operations, and
poor handling of the temporal dimension (Park and Wagner
1997). In coupling GIS with CA, CA can serve as an analytical
engine to provide a flexible framework for the programming
and running of dynamic spatial models. Masanao and
Couclelis (1997) addresses a generalized modeling formalism
of CA, which is extended with Geo-algebra capable of
expressing a variety of dynamic spatial models within a
common framework.

2.2 State-based Cellular Automata

In a standard CA model, the state is usually used as
the main attribute to describe the development of a cell. Any
cell cannot take on more than one state simultaneously,
although the state can change from one to another in different
periods. In land degradation simulation, the most general state
for a cell is degraded or not degraded. The essence of CA is
that the states of the neighboring cells influence the state of the
central cell. The notion of neighborhood is central to the CA
paradigm (Couclelis 1997), but the definition of neighborhood
is rather relaxed. A simple model is to project the state of a
central cell using a 3X3 window to count the distribution of
states in its neighboring cells. Land use classes were grouped
into three categories: degraded, degradable or prone to
degradation and non-degradable, which becomes the state of a
cell.

2.3 Suitability-based Cellular Automata

More sophisticated CA systems have been further
developed to simulate urban growth through the concepts of
‘development probability’ and ‘development
suitability” (White et al. 1997). This kind of simulation
assumes a relation between the states (developed or not),
development probability and development suitability:
8™ {xy} =f(P{xy})

P'{x,y} = F(DS'{x,y})

Where S{x,y} is the state at location {x,y}; P{x,y} is the
probability of transition to the state S at the location; and
DS{x,y} is the suitability of conversion to the state S. f and
are transition functions. Suitability-based cellular automata
differs from state-based cellular automata, in which the state of
a cell not only depends on the state of its neighborhood, but
also checks for its degree of suitability (DS) for development,
which in turn is based on a number of terrain-related factors.

This logic has been extended in the present study to
model land degradation dynamics. It is obvious that the CA
simulation heavily depends on the calculation of suitability
score based on neighborhood configuration. The suitability of
a cell for degradation is usually evaluated according to
location factors and site properties. The conversion criterion is
that cells with high degree of suitability will be first selected
for degradation. Much work has been done on the evaluation

38

of land suitability, which usually involves multi criteria
evaluation techniques (Novaline et al., 2001).

Land suitability, which describes the potential of a
cell for a specific type of land use, can act as an important
constraint in the CA model. For example, we may allow faster
land degradation in dry land area and more restricted or slower
degradation in vegetated area. Therefore, suitability plays an
important role in affecting the state or the transfer of the state
of a cell in an idealized situation. Suitability scores should be
re-computed in each iteration to achieve compatible land use.
The model may be expressed as a two-dimension model,
including states S(t) and suitability DS(t):

(SHI, DSIH) = f(st’ DS[, N)
where N, is the neighborhood providing input values for the
transition function f.

2.3.1 Multi Criteria Evaluation technique for Land
Suitability analysis: Multi criteria decision-making (MCDM)
problems involve a set of alternatives that are evaluated on the
basis of a set of evaluation criteria. The multi criteria decision
analysis has recently received considerable attention in GIS.
Combining different factors, some exclusionary and some
expedient, requires a weighting factor. Alternate approaches to
GIS-based multi criteria analysis have been suggested to
overcome the problem of weighting and data integration.
Analytic Hierarchy Process (AHP) has been identified as a
weighting strategy and Compromise Programming (CP)
technique has been identified for data integration (Novaline et
al. 1996, Deekshatulu et. al. 1999).

AHP is an approach that can be used to determine
the relative importance of a set of activities or criteria. The
first step of the AHP is to form a hierarchy of objectives,
criteria and all other elements involved in the problem. Once
the hierarchical structure has been formed, comparison
matrices are to be developed. These are evaluations made by
the decision-makers on the intensity of difference in
importance, expressed as a rank number on a given numerical
scale, for each level in the hierarchy. From these weights,
priorities are determined. An expert would be asked to make
pair wise comparisons between two factors at a time, decide
which factor is more important, then specify the degree of
importance on a scale between 1 and 9 in which 9 is most
important.  These evaluations would result in reciprocal
matrices of the components of each level against the items in
the level above. Consistency of the matrix has to be checked
and eigen value of the matrix has to be found. Upon
normalization of the eigen vector corresponding to maximum
eigen value, each factor coverage would have only one weight
associated with it.

Another important problem in GIS is how to
efficiently integrate data from various sources. Weighted
linear additive model is the one that is widely used for data
integration and is done with the help of algebraic functions
available in any commercial GIS package. In this, a total
compensation between criteria is assumed, meaning that a
decrease of one unit on one criterion can be totally
compensated by an equivalent gain on any other criteria. Ideal
Point Analysis, a Compromise Programming technique, is a
method to arrive at non-compensatory solution. It measures
the deviations from the ideal point in each data layer and a
min-max rule is applied wherein minimum of the maximum
weighted deviations are sought for getting a composite layer.
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The best compromise solution is defined as that which is at the
minimum distance from the theoretical ideal.

Driver variables for land degradation process
include: terrain-related variables like drainageJ slopel soil
textureJ dry land area] neighborhood agglomeration; climatic
variables like rainfall] aridity index; socio-economic variables
like population] livestock and tube well density. Neighborhood
agglomeration layer was derived by counting the number of
degraded cellsJ within a circular neighborhood with radius of 5
cells from each cell and assigning the sum to the center cell.
IRS LISS III data was used to interpret dry land areal soil
texture and drainage combined with ground truth. Slope was
generated from the contours at 1:50J000 scale toposheet.
Aridity index was calculated from the meteorological data on
temperature] potential evapo transpiration and rainfall.
Socioeconomic data on population] livestock and tube well
density were gathered from census data.

These driver variables acted as the land degradation
criterion in the multi criteria evaluation procedure. Each of
them was given appropriate weight adopting AHP procedure.

Weights given for driver variables
Neighborhood Agglomeration : 100

Drainage 190
Soil Texture : 80
Slope 170
Dry land area 165
Aridity Index 1 60
Rain fall 150
Population density 140
Livestock density 130
Tube well density 110

For example]J neighborhood agglomeration was
given higher preferencel because in a cellular automata modelJ
the state of a cell would depend on the state of its
neighborhood. Next preference goes to terrain-related
variables: drainage] soil textureJ slope and dry land areaJ owing
to their obvious influence on land degradation; followed by
climatic variables: aridity indexJ rainfall and socio-economic
variables: population] livestock] tube well density. To derive
the areas suitable or prone to degradation based on the said
criterial all the criterion maps were integrated adopting Ideal
Point Analysis] a Compromise programming technique.
Suitability score DS is computed using the distance metric as
below:

n
DS = [ z Bip (Xi* - Xik)p ]lp
i=1

Equation (1)

where i is the map layerJ 3 is the criterion preference J x* is
the ideal point J X is the cell value in ke cell for i parameter
and p is the factor which leads to non-compromising solution.
p can take values from 1 to infinity. Different values for p
were tried and p was set at 4 (Jose & LucienJ 1993). Climatic
and socio-economic data were simulated every year using their
growth rate value computed per year. And the land degradation
suitability was recomputed every year.

2.4 Probability-based Cellular Automata
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Traditionally] CA simulation only uses a binary
value to address the status of conversion based on the
calculation of probability. The probability of conversion is
calculated based on some kind of neighborhood function.
UsuallyJ the probability is further compared with a random
value to decide whether a cell is converted or not (1 for
converted and 0 for non-converted). In our modelJ the status of
cell has a continuous suitability value between 0 and 1 to
represent the stepwise selection or conversion process. A cell
will not be suddenly selected or converted.

A stochastic disturbance term is added to represent
unknown errors during the simulation. This can allow the
generated patterns to be closer to reality. Suitability values are
converted into probability values by introducing a stochastic
disturbance parameter a. Thus this rule defines the probability
of site selection in terms of land suitability. Since the
neighborhood is used in evaluation] land suitability here is
dynamic] which means that the maximum score of land
suitability is changing over simulation time. While
transforming the evaluation score into development
probability] one can use the maximum score of evaluation
during each simulation time as a benchmark because it
represents a relative availability at the time when the decision
is made. The probability is defined in a nonlinear form to the
evaluation score:

Py = exp [a ((DS% / DS'a) - 1)] if DSy # 0 Equation (2)
0 ifDSYy =0

where P, is the probability of land conversion from
degradable to degraded land at the location xy at time t; DSYy
is the land suitability score at the same location at time t;
DS'ac is the maximum score of land suitability at the
simulation time t of calculation; and o is the dispersion
parameter to be input through the first rule. The higher the
value of aJ the more stringent is the site selection process. The
exponent function in the equation (2) makes o to behave in the
required formJ likeJ if you decrease o. probability increases)
thereby introducing stochastic disturbance in the simulation.
See for exampleJ how the probability value changes for a

suitability value of 0:

when a =417 exp(-4) =0.018

whena =117 exp(-1) =0.3678

when o = 10J exp(-10) = 0.000045 (which is almost

equal to 0)

If DS'y = DS'%x =1 J then exp(0) =1

(i.e) if suitability is high and equals 1J then

probability = 1] irrespective of any value ofa
Therefore] o can take a value between 0 and 10. The ( — 1)
term in [((DS%y / DS'wax) - 1)]J in the equation (2) makes the
probability value range between 0 and 1.

Because of time limits and information barriersJ the best site is
not always chosen. Less desirable sites still have a chance of
being degraded. Thus] this rule introduces stochastic
disturbance to the system. Various values of a were tried
ranging between 1 and 10 and o was set at 4 in the present
study based on the calibration analysis. A flow chart
describing the methodology is shown in figure 1.
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3. RESULTS AND DISCUSSION

The CA model is built within a grid-GIS system of
ARC/INFO GIS using arc macro language. The model was
applied on parts of degradation-prone district in Andhra
Pradesh, India covering an area of 6410 square kilometers.
Land degradation maps corresponding to the years 1989, 1997
and 2002 were provided by National Remote Sensing Agency,
India. 1989 data was used as the seed and 1997 data was used
for calibration. 2002 data was used for validation (figure 2).
Prediction of the land degradation process was done for the
next 10 years till 2012 (figure 3). Further prediction can also
be done by appropriately predicting the growth rate of climatic
and socio-economic variables that were used in the model. A
simple formula for calculating growth rate is g = ((X¢ / Xen) —1)
* 100, where g is the growth rate in period t, x is the variable
being examined and n is the time period of interest.

For each iteration (corresponding to one year), cells
beyond certain probability are selected. The threshold value is
learnt through the calibration process. During the calibration
phase, the model was also tested with different values of o and
was finally set at 4. The preference value given for the driver
variables were also changed and the corresponding results
were checked during the calibration phase.

For the calibration data set corresponding to the year
1997, the percentage of correctly predicted cells is 78.27%.
For the validation data set corresponding to the year 2002, the
percentage of correctly predicted cells is 77.68% (figure 2).

Calibration report for 1997 Validation report for 2002
Correctlypredicted:5568209 cells ~ Correctlypredicted:5532171cells

Commission error:784343 cells Commission error :815829 cells
Omission error:761481 cells Omission error:773801cells

Correctly predicted cells include, degraded and non-degraded
cells present in both original land degradation map and the
predicted land degradation layer. Commission error indicates
cells, which were not found as degraded in original land
degradation map, but has been predicted as degraded.
Omission error indicates cells, which were found as degraded
in original land degradation map, but has not been predicted as
degraded.

Dynamic terrain-related processes are complicated
in nature as number of factors plays a role in reality. Some of
the drivers, which could have played a role in the degradation
process, could have been omitted, possibly because they could
not be recorded or monitored.

In the present study a probability-based cellular
automata has been implemented. A state-based cellular which
is based on the neighborhood configuration alone has evolved
into suitability-based cellular automata and then into a
probability-based cellular automata with the inclusion of
suitability score and stochastic disturbance factors. In state-
based cellular automata, the state of a cell will depend on the
state of the neighboring cells. It becomes more logical to
include the land suitability for degradation score as another
factor contributing to the degradation process in addition to
neighborhood configuration. Also, the stochastic disturbance
factor helped in creating some randomness and took care of
some of the unknown errors in the simulation.
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4. CONCLUSION

Integrated CA-GIS approaches can enhance the
current poor spatial dynamic modeling capability of GIS (Park
and Wagner 1997). CA models can be completely developed
within GIS for easily accessing the information stored in the
GIS database during the modeling processes. Constraints for
modeling can be defined using GIS and remote sensing data.
Remote sensing can be used to obtain land use and other land-
related data, and this data can be transformed, so that it can be
used in GIS for analysis and modeling. Therefore, the
development of CA within GIS greatly enhances the ability of
dynamic spatial modeling within GIS.

Achieving prediction accuracies of the order of 78%
is a significant task, as dynamic terrain-related processes are
complicated and there could be a possible omission of some of
the driver variables, which could not be recorded or monitored.
The integrated CA-GIS framework proves to be a promising
environment, wherein a variety of spatial-dynamic phenomena
can be modeled.

The model developed for simulating the spatial
dynamic process can be used as a planning tool to test the
effects of different land use change scenarios. Cellular
Automata are seen not only as a framework for dynamic
spatial modeling, but also as a paradigm for thinking about
complex spatial-temporal phenomena and an experimental
laboratory for testing ideas.
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Figure 1. Flow Chart describing the Cellular Automata methodology
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