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文  摘：The high error rate of recognition accuracy in spontaneous speech is due in part to the poor modeling of pronun-

ciations variations. An analysis of the acoustic data reveals that the variations include both phone changes and sound 

changes. Sound changes are the variations within the phoneme, such as nasalization, centralization, voiceless, voiced, etc. 

Sound changes are flexible and include diacritics that have to be explicitly hand-labeled by linguists. Annotating such 

corpus is time consuming and the available hand-labeled samples of sound changes are very limited. In this paper, based 

on standard phonetic unit inventory, we use dynamic programming alignment together with data-driven method to extend 

the phone set automatically for sound change description. We propose using deleted interpolation to interpolate baseline 

models and the more refined, but less well-trained sound change models, with the goal of improving the robust ability of 

sound change models to cover the diversity of sound variations in spontaneous speech. The effectiveness of this approach 

is evaluated on the 1997 Hub4NE Mandarin Broadcast News Corpus (1997 MBN) with different styles of speech. It gives 

a significant 1.98% absolute syllable error rate reduction in spontaneous speech. Additional 1.04% absolute syllable error 

rate reduction is achieved compared to Gaussian mixture sharing method. 
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1. Introduction 
 

The maximum likelihood (ML) criterion is 
widely used in speech recognition for HMM parame-
ters training [1]. If a large amount of training data is 
provided, good estimations of these parameters can be 
obtained. However, when only a limited amount of 
data is available, parameters of some HMM units 
would be poorly estimated which leads to recognition 
performance degraded. In Mandarin spontaneous 
speech, there is a large amount of pronunciation varia-
tions because of the casual way of speaking.  The 
variations can be classified into phone changes and 
sound changes [2]. Phone changes, are the replace-
ment of a phoneme by another alternate phone, such as 
‘b’ being pronounced as ‘p’. Sound changes, are the 
variations within the phoneme such as nasalization, 

centralization, voiceless and voiced. Both complete 
changes and partial changes are very common in 
spontaneous Mandarin speech. In [3], phone level 
transcriptions were studied for labeling a spontaneous 
Mandarin speech corpus – CASS. SAMPA_C labels 
were generated to annotate sound variability. 
SAMPA-C is a phone level transcription, which in-
cludes standard symbols for consonants and vowels, 
initials and finals, sound variability and spontaneous 
phenomena. In [4], pre-defined Generalized Ini-
tial/Final (GIF) units derived from SAMPA-C unit set 
were used to represent pronunciation variations in 
Mandarin speech. The GIF set includes the standard 
Initial/Final set as well as the extended phone set. Us-
ing GIF units is to augment the phone inventory artifi-
cially with the goal of labeling the alternative pronun-
ciations. However, we discovered that in most cases, 



 

 

there are only a limited number of training samples for 
the non-canonical part of the GIF set, thus the pa-
rameters of GIF models cannot be robustly estimated. 
Meanwhile, it is very time consuming to label sponta-
neous speech by hand. Using hand-defined symbols 
based on GIF is inadequate for identifying a lot of 
variations that cannot be distinguished consistently by 
phoneticians. In other words, phoneticians have low 
confidence with the extended phonetic units, espe-
cially when sound changes are commonly existed in 
spontaneous speech. In addition, the amount of avail-
able training samples of extended phonetic units is 
always insufficient for robust acoustic model training. 
On the other hand, generating acoustic sub-word unit 
(ASU) that is learned solely from training data is able 
to model part of sound changes, however, the use of 
ASU always makes it difficult to define a pronuncia-
tion dictionary [5]. Another approach of merely using 
triphone units can only model phonetic confusions 
caused by contextual effects, but cannot model the 
inherent phonetic confusions arising from the accent 
or other speech effects (e.g., the confusion between ‘z’ 
and ‘zh’, ‘n’ and ‘l’ in Mandarin speech). 

Deleted interpolation (DI) is regarded as one of 
the most powerful smoothing techniques to improve 
the performance of acoustic models as well as lan-
guage models in speech recognition [6, 7]. It is often 
necessary to combine well-trained general models with 
less well-trained but more refined models. Deleted 
interpolation has been successfully used for this pur-
pose for both discrete and semi-continuous HMM [6]. 
In conventional approach, DI is used for smoothing 
HMM parameters such as mean, variance between 
general and refined models [6, 7]. However, for con-
tinuous HMMs, such as those used in our experiments, 
it is more convenient to use DI on mixture weights 
other than mean and variance, as the latter are harder 
to estimate.  

In this paper, we propose an approach of interpo-
lating well-trained canonical models with those less 
well-trained refined models in order to strengthen the 
robustness of the acoustic model to cover sound 
changes. The deleted interpolation method is used to 
smooth the mixture component weights rather than all 
HMM parameters. Meanwhile, instead of manual 
derivation of phonetic unit inventory and data-driven 
generation of ASU units, the phonetic units for refined 
models are based on the standard phonetic unit inven-

tory and are learned from the samples obtained 
through DP alignment between the canonical and al-
ternate phone strings. An iterative estima-
tion-maximization (EM) procedure is used for the in-
terpolation weight estimation. In order to improve the 
efficiency of DI, we generate deleted models by shar-
ing Gaussian mixture components between 
well-trained general model and less well-trained re-
fined model. The weights of Gaussian mixtures in de-
leted HMM are governed by interpolation coefficient.  

This paper is organized as follows. Section 2 in-
troduces sound changes in Mandarin spontaneous 
speech. Section 3 describes the method of automatic 
phone set generation. In Section 4, we explain the de-
leted interpolation mechanism and how to share mix-
ture components between general and refined models. 
The experimental results are given in Section 5, and 
we conclude in Section 6.  
 

2. Sound Changes 

Pronunciation in spontaneous speech is very 
flexible. There are a lot more phonetic shifts, reduction 
and assimilation, duration changes, tone shifts, etc. 
compared to read speech and planned speech. Linguistic 
knowledge and empirical results show that pronunciation 
variations in Mandarin can be classified into two types: 
phone changes and sound changes. Phone changes are 
the replacement of a canonical phone by another 
canonical phone, such as ai being pronounced as ei. 
Sound changes are variations within the same phonemes, 
such as nasalization, centralization, voiceless, voiced, 
rounding, syllabic, pharyngealization, and aspiration. For 
example, f can change into f_v (voiced), ts to ts_v or ts_h, 
these changes are called diacritics. Phone changes can be 
modeled by canonical phone models and trained in the 
normal way. Sound changes are a little more difficult to 
model as this diacritic set of phones can only be trained 
by the samples labeled initially by humans. In other 
words, sound changes are occurred within the phoneme 
and are caused by sound variability [3]. They are very 
flexible and a lot less clear-cut than previously assumed 
and cannot be modeled by mere representation in 
alternate or concatenation of phone units [2, 8]. When 
partial changes occur, a phone is not completely 
substituted, deleted or inserted. Table 1 illustrates the 
examples of description of canonical pronunciations 
labeled with Initial/Final units and the relevant sound 
changes labeled with SAMPA_C. 



 

 

Table 1. Examples for sound changes description 
Pinyin SAMPA_C Comments 

Z /ts/ Canonical 
Z /ts_v/ Voiced 
Z /ts`/ Changed to ‘zh’ 
z /ts`_v/ Changed to voiced ‘zh’ 
e /7/ Canonical 
e /7`/ Retroflexed, or changed 

to ‘er’ 
e /@/ Changed to /@/ (a GIF)

Sound changes are variations within the phoneme. 
When sound changes occur, a phone is not completely 
substituted, deleted or inserted. Therefore, the transcriber 
agreement on spontaneous speech is much lower than 
that on read speech. The different transcriber agreement 
rates suggest that when sound changes occur, the 
transcribers who are forced to use a categorical label 
from the limited phonetic inventory may end up choosing 
different labels at the phone level representation. A 
similar situation can be found in ASR tasks. Due to the 
effect of sound changes the degree of phonetic 
confusions is increased in spontaneous speech, which 
leads to low discriminative power of acoustic models, 
resulting in the degradation of recognition performance.  

 
3. Automatic Phone Set Extension 
The phone set can be extended to describe variants 

by either using hand-defined symbols based on phono-
logical knowledge or using data-driven method [2, 5]. 
However, it has been shown that increasing phone set 
by using hand-defined symbols is very time consuming 
and insufficient in identifying a lot of phonetic confu-
sions which cannot be distinguished consistently by 
phoneticians. We use the standard phonetic unit inven-
tory together with data-driven method to extend phone 
set automatically. The procedure of generating the initial 
set of extended phonetic units is illustrated in Fig. 1 and 
is as follows: 

(1) Generate baseform transcriptions. The base-
form transcriptions can be obtained by looking 
up a canonical word-to-phoneme dictionary. 
When a word has multiple pronunciations, the 
correct phoneme concatenation is selected by 
transcribers. 

(2) Generate surface form transcriptions. In 
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Figure 1: Flowchart for automatic phone set exten-
sion. 

general, hand-labeled transcriptions are used as 
the surface form representation. However, due 
to a limited amount of available hand-labeled 
transcriptions, they are always insufficient for 
acoustic model training. Alternatively, we use 
automatic phone recognition method described 
in [9] to get the most likely phonetic sequence 
which is regarded as the surface form transcrip-
tions. 

(3) Align baseform and surface form transcriptions. 
A DP alignment tool with flexible local edit 
distance measure [9] is used for baseform and 
surface form alignment.  

(4) Obtain the inventory of extended phone units 
(EPU). The generation of initial inventory of 
extended phone units is based on the mapped 
baseform/surface form phone pairs. Through 
DP alignment, if the subword unit in the base-
form string maps to another different subword 
unit in the surface form string, we combine 
these two units to form a phone pair as an ex-
tended phone unit, such as ‘b_d’. To circumvent 
the sparse problem, we use log likelihood ratio 
test a confidence measure to discard the ex-
tended phone units [10]. 

(5) Generate phone-level transcriptions in terms of 
standard phone units and extended phone units. 



 

 

If a phoneme in the baseform transcription has a 
relevant alternate phone in the surface form 
transcription, and this phoneme-to-phone pair 
can be found in the inventory of extended 
phone units, the phoneme in the baseform string 
is replaced by the extended phone unit.  

(6) Generate refined acoustic model for extended 
phone units. The initial acoustic parameters of 
refined models with extended phone set de-
scription are cloned from their corresponding 
baseform models (e.g., the initial acoustic pa-
rameters of ‘b_d’ and ‘b_p’ are from those of 
‘b’) and re-estimated using the Baum-Welch 
(BW) algorithm with the transcriptions gener-
ated from Step 5. 

 
4. Deleted Interpolation and Sharing 

Mixture components 
Due to the limitation of hand-labeled data with 

sound change labeling on spontaneous corpus, the 
acoustic model of sound change units cannot be 
trained robustly with limited number of training sam-
ples. We propose using deleted interpolation together 
with state-level Gaussian mixture sharing at each it-
eration step to improve the robustness of 
sound-change models. The models are regarded as less 
well-trained but more refined models, whereas base-
line models with standard phone se units are less re-
fined but well trained models.  
 
4.1 Deleted Interpolation 

Deleted Interpolation is used to smooth less 
well-trained but more refined models with well-trained 
general model. With cross-validation data, an iterative 
estimation-maximization (EM) procedure is used for 
estimating the interpolating weights. In discrete 
HMMs, output distributions can be interpolated di-
rectly [6], while we focus on continuous density 
HMMs in which each observation probability distribu-
tion is represented by a mixture Gaussian density. De-

fine ( )⋅Detail
iP  as distributions of refined but less 

well-trained model and ( )⋅General
iP  is general 

well-trained model. A general deleted interpolation 
equation is as follows: 

( ) ( ) ( )⋅−+⋅=⋅ General
ii

Detail
ii

DI
i PPP λλ 1)(      (1) 

where ( )⋅DI
iP  is the mixture components after de-

leted interpolation and iλ  is the interpolation weight. 

Based on the discussion in Section 3, ( )⋅General
iP  

refers to baseline acoustic model, so it can be rewritten 

as ( )⋅IF
iP . ( )⋅Detail

iP  refers to extended phone unit 

(EPU) model, that is ( )⋅EPU
iP  

The purpose of deleted interpolation is to obtain 

the interpolating weight iλ  for each EPU model. iλ  

is estimated by cross-validation. For each needed to be 
interpolated unit, we assigned different interpolation 

weight iλ . The algorithm for estimating iλ  is as 

follows: 
1. Given a set of training data denoted as B , divide 

B into M  sets, MBBB ,,, 21 , 

2. Train ( )⋅IF
iP  and ( )⋅EPU

iP  model from each 

combination of 1−M  parts with EM algorithm, 
the residual part j  is reserved as the deleted part 
for cross-validation.  

3. Define the observation in deleted set as 

{ }KoooO ,,, 21= . Perform phone recogni-

tion on each deleted part j  using the 

( )⋅− jEPU
iP  models, save time sequence informa-

tion during phone recognition. 
4. Align phone recognition sequence (observed) with 

baseform sequence (canonical) using the DP 
alignment. Find the canonical unit that has been 
aligned with alternative unit i . According to the 
time sequence information in Step.3, record its 
corresponding phone observation in the deleted 
set. 

5. Let ( )( )m
jEPU

ik BPoc |, ⋅−  be the counts of oc-

currences of observation ko  and model 

( )⋅− jEPU
iP  in deleted set mB . 

6. Applying an iterative EM method for estimating 



 

 

the interpolation weights. Define the count for 

iλ  as iη  where 

( )( )∑∑
= =

− ⋅=
M

j

K

k
j

jEPU
iki BPoc

1 1

|,{η         

( )
( ) ( ) ( )}1 k

jIF
iik

jEPU
ii

k
jEPU

ii

oPoP
oP

−−

−

−+⋅
⋅

×
λλ

λ       (2) 

Update the interpolation weights: 

( )∑ =
⋅

= M

j

inew
i

c
1

η
λ         (3) 

According to Eq.(1), share Gaussian mixture 
components between EPU and IF models to gen-
erate a new interpolated model. At each iteration, 

calculate the log likelihood iLE  with deleted 

set: 

 ( )( ) ( )( )∑∑
= =

−− ⋅=
M

j

K

k
k

jDIEPU
ij

jEPU
iki oPBPocLE

1 1
log|,  

If iLE converges, which means the interpolation 

weight is also converged, we stop iteration. If not, 

substitute ( )⋅− jEPU
iP  by ( )⋅DIEPU

iP , go to Step 6. 

4.2 Gaussian Mixture Components Sharing 
From Eq.(1), we can see that the Gaussian mix-

ture components of deleted model consist of mixture 
components of original detailed and general models. 
The mixture weights of deleted model are governed by 
interpolation weights. After sharing mixture compo-
nents, the deleted models must be smoothed by origi-
nal well-trained models. In addition, other HMM pa-
rameters of deleted models can be updated at each 
iteration during EM training procedure. Let 

( ) ( )∑ ∑Ν=⋅
a

iiia
EPU

i wP ,;µο  

( ) ( )∑ ∑Ν=⋅
b

iiib
IF

i wP ,;µο  

ba,  are the total mixture numbers of one state, and 

ibia ww , are the weights for each mixture component. 

According to Eq.(2), based on the weights of { }iλ  

generated from Step.6 of the previous section, inter-

polation distributions for EPU model i  is: 

( ) ( ) ( )∑ ∑Ν=⋅
a

iiiai
DIEPU

i wP ,;µολ   

   ( ){ } ( )∑∑ Ν−+
ii

b
ibi w ,;1 µολ   (4) 

From Eq.(4), it is obviously that after sharing mixture 
components from well-trained models (IF) to refined 
but less well-trained models (EPU), the distribution of 
EPU can be smoothed, and with EM training, it will be 
optimized.  
 

5. Experimental Results 
The effectiveness of deleted interpolation ap-

proach was evaluated on spontaneous Mandarin 
speech using the LDC 1997 MBN corpus. The acous-
tic training set and interpolating set consisted of 10 
hours of speech (10,483 utterances include about 
183,513 syllables) selected from the first two CDs in 
the LDC 1997 MBN corpus. The 1997 MBN corpus 
was equally divided into 3 blocks, 3=M . The test-
ing data consisted of two parts: the first test set 
(test_set1) included 865 spontaneous utterances with 
11,512 syllables in total. Test_set1 was independent of 
the training set selected from the first two CDs. It in-
cluded conversational speech, colloquial speech, the 
speech of people talking in a meeting, etc. The second 
test set (test_set2) was used for performance compari-
son consisting of clean utterances (F0 condition) from 
the 1997 and 1998 Hub4NE evaluation sets [9]. 
Test_set2 contained 1263 utterances, with about 
15,535 syllables. The HMM topology was three-states, 
left-to-right without skips. The acoustic features were 

MFCC13 , MFCC∆13  and MFCC∆∆13 . 27 standard 
initials (include 6 zero initial symbols) and 38 finals 
were used to generate context-independent HMMs. We 
used decision tree based state-tying procedures to 
build 10 Gaussian-component triphone models with 
2904 tied-states. 57 extended phone units were se-
lected using DP alignment and confidence measure 
criterion. Based on acoustic and phonetic confusion 
measure criterion described in [10], we finally used 32 
extended phone units which cover the majority of 
sound changes in spontaneous Mandarin speech. 
Among these 32 units, it is found that around 70% of 
them are for Chinese initials. The dictionary used in 
decoding was standard syllable-to-initial/final with 
multi-pronunciations, it had 2.4 pronunciations per 
syllable on average [9]. The total syllable numbers was 



 

 

415. We combined interpolation weights learning 
method shown in Section 4 with EM training. In gen-
eral, the interpolation weights converged after five or 
six iterations. 

Using the decision tree based state-tying ap-
proach [11], 552 tied-states were generated for 96 de-
cision trees of EPU triphones. The total number of 
Gaussians was 34,540 ((2904+552)*10). Compared 
with the baseline model of 29040 Gaussians, this gives 
a 18.9% increase in parameter size. In order to make a 
fair comparison, we generated an enhanced HMM 
which has 12 Gaussians per state (the total number of 
Gaussians is 34,848). We also compared the results 
with the method of Gaussian mixture sharing .The 
recognition performance is listed in Table 2. 

 

Table 2: A comparison of recognition performance. 
 Syllable Error Rate (SER) %

system Test_set1 Test_set2 
Baseline 42.23 30.92 

Enhanced HMMs 41.87 30.62 
Gaussian mixture sharing 41.29 30.05 

DI of EPU models 40.25 29.78 
Table 2: A comparison of recognition performance. 

It is shown that after interpolating some of EPU 
triphones, the SER reduces 1.98% and 1.62% abso-
lutely on spontaneous speech compared with the base-
line and the use of enhanced HMM, respectively. Fur-
thermore, it gives an additional 1.04% absolute SER 
reduction in spontaneous speech with respect to that of 
Gaussian mixture sharing. It proves that after interpo-
lating mixture components from well-trained models, 
the EPU models are smoothed and become more ro-
bust for speech recognition. The results in Table.2 also 
shows that simply increasing the Gaussian numbers 
per state does not help much in terms of SER reduc-
tion, since some of the Gaussians are poorly estimated 
as the number of Gaussians increased. In addition, the 
use of Gaussian mixture sharing only guarantee the 
shared mixtures with sufficient training samples can be 
estimated robustly.  

 
6. Conclusion 

We presented an approach of modeling sound 
changes in Mandarin spontaneous speech by deleted 
interpolating the sound-changed model with its corre-

sponding baseline model. Based on standard phonetic 
unit, we used DP alignment together with data-driven 
method to extend the phone set automatically for 
sound change description. Our deleted interpolation 
approach was applied to mixture component weights 
rather than all HMM parameters, simplifying the pro-
cedure for continuous HMM. In addition, sound 
changes in Mandarin spontaneous speech are difficult 
to model because of the data sparseness problem, as 
well as it is very time consuming to generate 
hand-labeled transcriptions, our approach is still effi-
cient to model sound changes at the phone and model 
levels. It has been shown that this deleted interpolation 
approach provides a significant 1.98% and 1.04% ab-
solute SER reduction for baseline and Gaussian mix-
ture sharing method in spontaneous speech.  
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