
International Symposium on Chinese Spoken Language Processing 2002, pp. 339-342, Aug. 22-24, 2002, Taipei

A COMPRESSION METHOD USED IN LANGUAGE
MODELING FOR HANDHELD DEVICES

Genqing WU, Fang ZHENG1, and Wenhu WU

Center of Speech Technology, State Key Laboratory of Intelligent Technology and Systems
Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China

[wgq, fzheng, wuwh]@sp.cs.tsinghua.edu.cn, http://sp.cs.tsinghua.edu.cn

1 The author currently is also with Beijing d-Ear Technologies Co., Ltd., fzheng@d-Ear.com.

ABSTRACT
In this paper, a new n-gram language model compression method
is proposed for applications in handheld devices, such as mobiles,
PDAs, and handheld PCs. Compared with the traditional
methods, the use of the proposed method can compress the
model to a great extent with good performance preserved. The
proposed method includes three aspects. The language model
parameters are detailedly analyzed and a criterion based on the
probability and the importance of n-grams is used to determine
which n-grams should be kept and which be removed. A curving
compressing function is proposed to be used to compress the n-
gram count values in the full language model. And a code table is
extracted and used to estimate the probabilities of bi-grams. Our
experiments show that by using this compression method the
language model can be reduced dramatically to only about 1M
bytes while the performance almost does not decrease. This
makes the language model usable in handheld devices.

1. INTRODUCTION

The statistical language model (LM), which is one of important
parts in automatic speech recognition, is usually trained from a
very large text corpus using the Markov model [1], where the
word sequence is considered as an observation of an n-1 order
Markov process called n-gram. In such a model framework, the
current word is dependent only on the preceding n-1 words. For
example, for tri-gram where n=3, given a word sequence

1 2... ns w w w= , the probability can be estimated as

() () () ()1 2 1 2 13| |
n

i i iP s P w P w w P w w wi − −=∏= . For this kind of n-

gram language model, such methods as the maximum likelihood
estimation (MLE) are often used to estimate the model
parameters.

Nowadays, language modeling researchers mainly focus on two
aspects, to improve the modeling accuracy and to reduce the
model size. Ways to improve the accuracy include enhancing the
smoothing, estimating the probabilities of the unseen n-grams
more precisely, and combining the traditional n-gram framework
with other methods such as probabilistic latent semantic analysis
(LSA). All these methods work but none of them is remarkable
enough. Furthermore, according to the recent literature, the
performance of the language model increases greatly with the
increase of the size of the training corpus. On the other hand,
with the booming development of handheld devices, such as
mobiles and PDAs and handheld PCs, it is a great trend that
more and more PC based applications will be ported to handheld

devices. Obviously, the memory and storage limitations of
handheld devices will be the bottleneck of the porting and those
applications using the huge language model are encountering
unprecedented difficulties. In this situation, some researchers
focus on the compression of the language models, such as [2]
and [3], and achieve quite good performance. However, due to
the storage and calculation limitations of the handheld devices,
they are still a little bit too large to use practically.

In this paper, we conduct an elementary research on language
model compression method for handheld devices, which is
different from the traditional techniques. This paper is organized
as follows. Firstly, a full language model for use in PC
environments is trained by an elaborate process; secondly, three
techniques are used to compress the language model to a much
smaller one, and finally, experiments are done and the results are
given and analyzed.

2. TRAINING OF FULL LANGUAGE MODEL

The basic idea of language model compression is to keep as
much information as possible in the compressed model with a
much smaller size. The performance of a compression method is
often measured by the performance degeneration during the
compression. So a full language model with good performance is
the footstone for language model compression.

In our research, we use the Katz smoothing method to train the
full language model [4]. As we know, the traditional Katz
smoothing method smoothes the bi-gram model this way

()
() ()

() ()
() ()

1 1

1 1 1

1

, / ,

| , / , 0

, 0

i i i T

Katz i i r i i i T

i Katz i

C w w C w if r r

P w w d C w w C w if r r

w P w if r

− −

− − −

−

 >
= < ≤
 α =

 (1)

where ()C ⋅ stands for the occurring count of the specified event,

r stands for ()1,i iC w w− for convenience, Tr is a count threshold

for discounting purpose, 1()iw −α and rd are the smoothing

parameters for bi-gram. If rn denotes the number of n-grams that

occur exactly r times, rd is calculated as follows

 1

1

*
1

1

(1)

(1)
1

T T

T T

r

r
r

rr
r nd

r

n

n

n

+

+

+
−

= +
−

 (2)

After rd is determined, 1()iw −α can be calculated by this

formula

()

()

1

1

1 |
: 0

()
1

: 0

i

i

i

i

katz i

i
katz

P w w
w r

w
P w

w r

α
−

−

−
>=

−
>

∑
∑

 (3)

The training process of tri-gram is similar to that of bi-gram.
Because the full language model contains almost all information
extracted from the training corpus, the accuracy is of course quite
high. And the language model compression is based on such an
accurate full language model aiming at reducing the model size
with performance kept.

3. COMPRESSION METHOD

As mentioned above, the main idea of language model
compression is to keep as much information as possible when
compressing the original full model. In such a compressing
method, the important information should be kept while the
redundant information should be taken away as much as possible.

According to such a requirement, the language model size should
be about 1M or even less so that it could be used in handheld
devices. It’s obvious that the tri-gram language model is not
suitable and nor applicable in such situation. Accordingly, we
propose to use bi-gram model with size reduced greatly enough
for practical use.

3.1 Choosing Important Grams

Generally speaking, a bi-gram model trained from a large corpus
with several hundreds million words contains tens of millions of
bi-grams, actually each of which does not contribute equally.
Based on this, not all of them is necessary within an acceptable
range of error, some could be selectively removed so as to minish
the model. There are several methods for the decision on which
to remove and which to preserve.

The first method measures the importance of a bi-gram according
to the joint probability. Given a bi-gram ()1 2,w w , the joint

probability can be calculated as follows

() ()
()

1 2

1 2
1 2

1 2
,

,
,

,
w w W

C w w
P w w

C w w
∈

=
∑

 (4)

where W is the vocabulary. We can find easily that the
denominator of equation (4) remains same for any bi-gram, and
therefore the count of bi-gram ()1 2,w w is equivalent to the joint

probability. If we suppose 1w and 2w be independent and define

(){ }1 2 1 2, | ,w w w W w W∈ ∈ as the whole event space, obviously,

()1 2,P w w is the occurring probability of the event ()1 2,w w ,

and so we refer to an event with a bigger probability as one with
higher importance.

The second method measures the importance of a bi-gram
according to the conditional probability, and it can be calculated
from the following equation

() ()
()
1 2

2 1
1

,
|

C w w
P w w

C w
= (5)

Intuitively，the second method is more reasonable than the first
one. It can be illustrated as follows. Considering two simple
situations, where in situation 1, ()11 12,C w w =1 and ()11C w =10

while in situation 2, ()21 22,C w w = 1 and ()21C w = 1000. The

counts of grams ()11 12,w w and ()21 22,w w are equal, therefore

their joint probabilities are equal, but the counts of their
corresponding histories are quite different. Because ()11C w in

situation 1 is much less than ()21C w in situation 2, relatively,

the gram ()11 12,w w for 11w is much more important than gram

()21 22,w w for 21w .

The two methods above consider only the counts or the
probabilities of the bi-grams; intuitively, if we consider bi-grams
and uni-grams together, the choosing should be more reasonable.
For example, suppose bi-gram ()1 2,w w is very important to the

model and will be kept in the compressed model according to the
above criterion, suppose the back-off smoothing calculation
gives a similar probability estimation, that is to say, either way
leads to an almost same result, or one of these two is redundant.
In this situation, it is unnecessary to keep the bi-gram because
the probability can be calculated using the back-off method.

After this first-stage processing, the model size will be smaller
while the performance is preserved.

3.2 Compressing Count Values

Because the training corpus is quite large, for the full language
model, it is necessary to use multiple bytes to present the
occurring count of an n-gram, and usually, a 4-byte double word
(long integer) is used for uni-gram. This will obviously increase
the model size. An alternative way to reduce the model size is to
store the count value with short integer, which suggests us to
compress the count value range.

The famous Harvard linguistic professor George Kingsley Zipf
issued the classical law about the statistical characteristic of
language [5], and it shows that frequency of occurrence of some
event (P), as a function of the rank (i) when the rank is
determined by the above frequency of occurrence, is a power-law

function 1/ a
ip i≈ with the exponent a close to unity [5]. From

this law, it can be concluded that most of the n-grams occur with
very low frequencies, and our experiments provide proofs for it.

Figure 1: Uni-gram Distribution

Figure 2: Bi-gram Distribution

Figure 3: Tri-gram Distribution

That is to say, though a 4-byte data is selected to store the
occurring count of a uni-gram, most of the uni-grams have very
small occurring counts. This situation is very similar to the voice
signal sampling in telephone networks where most of the sample
data are very small. In voice signal processing, A-law or μ-Law
is adopted to compress the signal. The basic idea of A-Law orμ-
Law is to compress a linear PCM sample (13 bits) down to 8 bits
(one byte). This idea can be borrowed into the storing of the n-
gram counts, in other words, to compress the count value
according to a bending curve. In order to simplify the calculation,
we use a piecewise linear function as follows

()
0'

0 0 0

C C C
C

C s C C C C

≤
=  + − > i

 (6)

where
0C is a connecting point, all values less than

0C will be

unchanged. S is the slope and is always much less than 1, as
illustrated in Figure 4. In Section 5, the experimental results for
the piecewise linear compression method used for uni-gram
count compression will be given.

C 0

C 0

'C

C
0

'
m axC

Figure 4: Piecewise Linear Compression of Count Value

3.3 Approximating Probability according to Rank

The piecewise linear compression function is usually used for
uni-gram count compression, and a powerful method can be used
for bi-gram compression.

In the full language model, the bi-gram ()1 2,w w is

corresponding to the occurring count and Equation (1) is used to
calculate the probability. However, given the size of the
compressed model, more bi-grams can be stored if the count
information is discarded. The main idea here is to approximate
the occurring probability according to its rank instead of its
actual value. In this case, no probability value is needed to be
stored because the rank-related probabilities can be trained
offline and they are fixed instead of dynamic. An easy way to
estimate the probabilities is to use a codebook. The calculation is
as simple as follows. Suppose there are n grams sharing the
same history 1w in the compressed model. These grams will be

sorted in a descending order of bi-gram counts, and the number

i bi-gram will be assigned with a probability ,
code

i nP , which can

be calculated offline as

()
1 1

1 1

1
:

,

:

|

1
w

w

i
w N ncode

i n

w N n

P w

P
=

=

=
∑

∑

i
 (7)

where ()1|iP wi is the probability of the number i ’th bi-gram

with the history 1w in the full language model and
1wN the

number of bi-grams with history
1w in the compressed model.

Table 1 gives the statistical result of the codebook.

Table 1: Probability Codebook of Bi-grams

n i 0 1 2 3 4 5

1 0.385 - - - - …

2 0.322 0.157 - - - …

3 0.285 0.139 0.091 - - …

4 0.273 0.132 0.084 0.060 - …

5 0.262 0.130 0.083 0.058 0.045 …

6 … … … … … …

4. PRACTICAL CONSIDERATIONS

Summarily speaking, for the compressed model, the probabilities
will be calculated in this way: if the bi-gram can be found in the
full model, the probability will be assigned with the
corresponding value in the codebook; otherwise, the compressed
uni-gram model will give the probability.

In our application, piecewise linear compression method is used
to compress the uni-gram counts and a codebook is used to
approximate the bi-gram probabilities, both of the two methods
destruct the normalization of the model, which means that the
summation of the probabilities of the n-grams with a same
history does not equal 1 (actually, it is only a little bit greater or
less than 1). It is easy to normalize it, but our primary
experiments show that the normalization doest not improve the
compressed model. This is also explainable theoretically. What
affects the model performance more is the relative relation
between any two grams instead of the absolute value of each
gram.

5. EXPERIMENTS AND RESULTS

The full tri-gram language model used in our experiments is
trained from a large corpus containing about 200 million Chinese
words. The corpus covers 4-year text data of People’s Daily
(from 1993 to 1994 and from 1996 to 1997) and a few texts of
other newspapers. The vocabulary consists of 50,622 Chinese
words. The full model is then compressed into a small model of
about 1 MB size.

Three test corpora are predefined. Corpus A (35,025 characters)
is a political lecture given by the Chinese President JIANG
Zemin. Corpus B (1,800 sentences with 23,310 characters) is
from the Chinese National High-Tech 863Project, and Corpus C
(375 sentences with 3,466 characters) is news from the web of
PhoenixTV in Hong Kong (http://www.phoenixtv.com.cn).

The compressed model is tested across a Chinese Pinyin-to-
character (note: Pinyin is the pronunciation of a character
conversion system, and the results are given in the following
sections.

5.1 Performance of the Curving Method

Table 2: The Accuracy (%) of Conversion Using
Piecewise Linear Compression Method for Uni-gram

Count

Method Corpus A B C Avr.

Uncompressed model 92.02 83.51 86.79 87.44

WORD Curving 91.89 82.95 86.50 87.11

BYTE Curving 91.11 81.55 84.39 85.68

In this experiment, only uni-gram is used for decoding. The
uncompressed model use 4-byte data to store the occurring
counts of uni-grams. As shown in Table 2, using WORD (2 bytes)
or BYTE and the piecewise linear compression method can
achieve almost the same accuracy as uncompressed uni-gram
model.

5.2 Compressed Model Performance

Table 3: The Conversion Accuracy (%) of Compressed
Model Compared with Uncompressed Model

Model Corpus A B C Aver.

Full tri-gram model

 (Size: 340 M)
99.34 98.90 94.23 97.49

Full bi-gram model

(Size: 43 M)
98.75 96.39 93.94 96.36

Compressed Bi-gram model

(Size: 940 K)
97.07 90.94 92.03 93.35

Table 3 shows the performance of compressed model compared
with the full tri-gram model and the bi-gram model. It can be
seen that the compressed model is much smaller than the full tri-
gram model and the bi-gram model, but the performance is
comparable and good enough for applications in handheld
devices.

6. CONCLUSIONS

With the booming development of the handheld devices, more
and more applications should and will be ported to handheld
devices. In this paper, a method for language model compression
is proposed. Because of the poor storage and computation ability
of the devices, the compression ratio of the method should be
very high, to achieve that, the model is shrunken from the full
model by a selective method, which analyzes the parameters of
the model carefully and uses both the conditional probability and
the importance of the unit to determine whether it should be
reversed or not. Additionally, a curving technique is designed to
reduce the size of the uni-gram counts. Furthermore, a codebook
is used to restore the bi-gram probabilities. Our experiments
show that though the size of the compressed model is only about
1 MB, it is good enough to be used in handheld devices.

7. REFERENCES

[1] F. Jelinek and R. L. Mercer, “Interpolated estimation of
Markov source parameters from sparse data,” Pattern
Recognition in Practice, E. S. Gelsema and L. N. Kanal,
Eds. Amsterdam: North-Holland, 1986

[2] Shuo DI, Lei ZHANG, Zheng CHEN, Eric CHANG, Kai-Fu
LEE, “N-Gram Language Model Compression Using Scalar
Quantization and Incremental Coding”, International
Symposium on Chinese Spoken Language Processing,
Beijing, China, 2000, pp.347-350.

[3] Whittaker E, Raj B, “Quantization-based Language Model
Compression”, Proceedings of Eurospeech Conference,
Aalborg, Denmark, 2001, pp. 33-36.

[4] S.M. Katz, “Estimation of Probabilities from Sparse Data
for the Language Model Component of a Speech
Recognizer,” ICASSP’87, 35(3): pp. 400~401, 1987.

[5] G. Zipf, Selective Studies and the Principle of Relative
Frequency in Language. Harvard University Press,
Cambridge, MA, 1932.

