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ABSTRACT 
In this paper, a new n-gram language model compression method 
is proposed for applications in handheld devices, such as mobiles, 
PDAs, and handheld PCs. Compared with the traditional 
methods, the use of the proposed method can compress the 
model to a great extent with good performance preserved. The 
proposed method includes three aspects. The language model 
parameters are detailedly analyzed and a criterion based on the 
probability and the importance of n-grams is used to determine 
which n-grams should be kept and which be removed. A curving 
compressing function is proposed to be used to compress the n-
gram count values in the full language model. And a code table is 
extracted and used to estimate the probabilities of bi-grams. Our 
experiments show that by using this compression method the 
language model can be reduced dramatically to only about 1M 
bytes while the performance almost does not decrease. This 
makes the language model usable in handheld devices. 

1. INTRODUCTION 

The statistical language model (LM), which is one of important 
parts in automatic speech recognition, is usually trained from a 
very large text corpus using the Markov model [1], where the 
word sequence is considered as an observation of an n-1 order 
Markov process called n-gram. In such a model framework, the 
current word is dependent only on the preceding n-1 words. For 
example, for tri-gram where n=3, given a word sequence 

1 2... ns w w w= , the probability can be estimated as 
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gram language model, such methods as the maximum likelihood 
estimation (MLE) are often used to estimate the model 
parameters. 

Nowadays, language modeling researchers mainly focus on two 
aspects, to improve the modeling accuracy and to reduce the 
model size. Ways to improve the accuracy include enhancing the 
smoothing, estimating the probabilities of the unseen n-grams 
more precisely, and combining the traditional n-gram framework 
with other methods such as probabilistic latent semantic analysis 
(LSA). All these methods work but none of them is remarkable 
enough. Furthermore, according to the recent literature, the 
performance of the language model increases greatly with the 
increase of the size of the training corpus. On the other hand, 
with the booming development of handheld devices, such as 
mobiles and PDAs and handheld PCs, it is a great trend that 
more and more PC based applications will be ported to handheld 

devices. Obviously, the memory and storage limitations of 
handheld devices will be the bottleneck of the porting and those 
applications using the huge language model are encountering 
unprecedented difficulties. In this situation, some researchers 
focus on the compression of the language models, such as [2] 
and [3], and achieve quite good performance. However, due to 
the storage and calculation limitations of the handheld devices, 
they are still a little bit too large to use practically. 

In this paper, we conduct an elementary research on language 
model compression method for handheld devices, which is 
different from the traditional techniques. This paper is organized 
as follows. Firstly, a full language model for use in PC 
environments is trained by an elaborate process; secondly, three 
techniques are used to compress the language model to a much 
smaller one, and finally, experiments are done and the results are 
given and analyzed. 

2. TRAINING OF FULL LANGUAGE MODEL 

The basic idea of language model compression is to keep as 
much information as possible in the compressed model with a 
much smaller size. The performance of a compression method is 
often measured by the performance degeneration during the 
compression. So a full language model with good performance is 
the footstone for language model compression. 

In our research, we use the Katz smoothing method to train the 
full language model [4]. As we know, the traditional Katz 
smoothing method smoothes the bi-gram model this way 
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where ( )C ⋅  stands for the occurring count of the specified event, 

r  stands for ( )1,i iC w w−  for convenience, Tr  is a count threshold 

for discounting purpose, 1( )iw −α  and rd  are the smoothing 

parameters for bi-gram. If rn denotes the number of n-grams that 

occur exactly r  times, rd  is calculated as follows 
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After rd  is determined, 1( )iw −α  can be calculated by this 

formula 
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The training process of tri-gram is similar to that of bi-gram. 
Because the full language model contains almost all information 
extracted from the training corpus, the accuracy is of course quite 
high. And the language model compression is based on such an 
accurate full language model aiming at reducing the model size 
with performance kept. 

3. COMPRESSION METHOD 

As mentioned above, the main idea of language model 
compression is to keep as much information as possible when 
compressing the original full model. In such a compressing 
method, the important information should be kept while the 
redundant information should be taken away as much as possible. 

According to such a requirement, the language model size should 
be about 1M or even less so that it could be used in handheld 
devices. It’s obvious that the tri-gram language model is not 
suitable and nor applicable in such situation. Accordingly, we 
propose to use bi-gram model with size reduced greatly enough 
for practical use. 

3.1 Choosing Important Grams 

Generally speaking, a bi-gram model trained from a large corpus 
with several hundreds million words contains tens of millions of 
bi-grams, actually each of which does not contribute equally. 
Based on this, not all of them is necessary within an acceptable 
range of error, some could be selectively removed so as to minish 
the model. There are several methods for the decision on which 
to remove and which to preserve. 

The first method measures the importance of a bi-gram according 
to the joint probability. Given a bi-gram ( )1 2,w w , the joint 

probability can be calculated as follows 
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where W is the vocabulary. We can find easily that the 
denominator of equation (4) remains same for any bi-gram, and 
therefore the count of bi-gram ( )1 2,w w  is equivalent to the joint 

probability. If we suppose 1w  and 2w  be independent and define 

( ){ }1 2 1 2, | ,w w w W w W∈ ∈  as the whole event space, obviously, 

( )1 2,P w w  is the occurring probability of the event ( )1 2,w w , 

and so we refer to an event with a bigger probability as one with 
higher importance. 

The second method measures the importance of a bi-gram 
according to the conditional probability, and it can be calculated 
from the following equation 
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Intuitively，the second method is more reasonable than the first 
one. It can be illustrated as follows. Considering two simple 
situations, where in situation 1, ( )11 12,C w w =1 and ( )11C w =10 

while in situation 2, ( )21 22,C w w  = 1 and ( )21C w  = 1000. The 

counts of grams ( )11 12,w w  and ( )21 22,w w  are equal, therefore 

their joint probabilities are equal, but the counts of their 
corresponding histories are quite different. Because ( )11C w  in 

situation 1 is much less than ( )21C w  in situation 2, relatively, 

the gram ( )11 12,w w  for 11w  is much more important than gram 

( )21 22,w w  for 21w . 

The two methods above consider only the counts or the 
probabilities of the bi-grams; intuitively, if we consider bi-grams 
and uni-grams together, the choosing should be more reasonable. 
For example, suppose bi-gram ( )1 2,w w  is very important to the 

model and will be kept in the compressed model according to the 
above criterion, suppose the back-off smoothing calculation 
gives a similar probability estimation, that is to say, either way 
leads to an almost same result, or one of these two is redundant. 
In this situation, it is unnecessary to keep the bi-gram because 
the probability can be calculated using the back-off method. 

After this first-stage processing, the model size will be smaller 
while the performance is preserved. 

3.2 Compressing Count Values 

Because the training corpus is quite large, for the full language 
model, it is necessary to use multiple bytes to present the 
occurring count of an n-gram, and usually, a 4-byte double word 
(long integer) is used for uni-gram. This will obviously increase 
the model size. An alternative way to reduce the model size is to 
store the count value with short integer, which suggests us to 
compress the count value range. 

The famous Harvard linguistic professor George Kingsley Zipf 
issued the classical law about the statistical characteristic of 
language [5], and it shows that frequency of occurrence of some 
event (P), as a function of the rank (i) when the rank is 
determined by the above frequency of occurrence, is a power-law 

function 1/ a
ip i≈  with the exponent a close to unity [5]. From 

this law, it can be concluded that most of the n-grams occur with 
very low frequencies, and our experiments provide proofs for it. 

 



Figure 1: Uni-gram Distribution 

 

Figure 2: Bi-gram Distribution 

 

Figure 3: Tri-gram Distribution 

That is to say, though a 4-byte data is selected to store the 
occurring count of a uni-gram, most of the uni-grams have very 
small occurring counts. This situation is very similar to the voice 
signal sampling in telephone networks where most of the sample 
data are very small. In voice signal processing, A-law or μ-Law 
is adopted to compress the signal. The basic idea of A-Law orμ-
Law is to compress a linear PCM sample (13 bits) down to 8 bits 
(one byte). This idea can be borrowed into the storing of the n-
gram counts, in other words, to compress the count value 
according to a bending curve. In order to simplify the calculation, 
we use a piecewise linear function as follows 
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where 
0C  is a connecting point, all values less than 

0C  will be 

unchanged. S  is the slope and is always much less than 1, as 
illustrated in Figure 4. In Section 5, the experimental results for 
the piecewise linear compression method used for uni-gram 
count compression will be given. 
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Figure 4: Piecewise Linear Compression of Count Value 

3.3 Approximating Probability according to Rank 

The piecewise linear compression function is usually used for 
uni-gram count compression, and a powerful method can be used 
for bi-gram compression.  

In the full language model, the bi-gram ( )1 2,w w  is 

corresponding to the occurring count and Equation (1) is used to 
calculate the probability. However, given the size of the 
compressed model, more bi-grams can be stored if the count 
information is discarded. The main idea here is to approximate 
the occurring probability according to its rank instead of its 
actual value. In this case, no probability value is needed to be 
stored because the rank-related probabilities can be trained 
offline and they are fixed instead of dynamic. An easy way to 
estimate the probabilities is to use a codebook. The calculation is 
as simple as follows. Suppose there are n  grams sharing the 
same history 1w  in the compressed model. These grams will be 

sorted in a descending order of bi-gram counts, and the number 

i  bi-gram will be assigned with a probability ,
code

i nP , which can 

be calculated offline as  
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where ( )1|iP wi  is the probability of the number i ’th bi-gram 

with the history 1w  in the full language model and 
1wN  the 

number of bi-grams with history 
1w  in the compressed model. 

Table 1 gives the statistical result of the codebook. 

Table 1:  Probability Codebook of Bi-grams 

n    i 0 1 2 3 4 5 

1 0.385 - - - - … 

2 0.322 0.157 - - - … 

3 0.285 0.139 0.091 - - … 

4 0.273 0.132 0.084 0.060 - … 

5 0.262 0.130 0.083 0.058 0.045 … 

6 … … … … … … 



4. PRACTICAL CONSIDERATIONS 

Summarily speaking, for the compressed model, the probabilities 
will be calculated in this way: if the bi-gram can be found in the 
full model, the probability will be assigned with the 
corresponding value in the codebook; otherwise, the compressed 
uni-gram model will give the probability. 

In our application, piecewise linear compression method is used 
to compress the uni-gram counts and a codebook is used to 
approximate the bi-gram probabilities, both of the two methods 
destruct the normalization of the model, which means that the 
summation of the probabilities of the n-grams with a same 
history does not equal 1 (actually, it is only a little bit greater or 
less than 1). It is easy to normalize it, but our primary 
experiments show that the normalization doest not improve the 
compressed model. This is also explainable theoretically. What 
affects the model performance more is the relative relation 
between any two grams instead of the absolute value of each 
gram.  

5. EXPERIMENTS AND RESULTS 

The full tri-gram language model used in our experiments is 
trained from a large corpus containing about 200 million Chinese 
words. The corpus covers 4-year text data of People’s Daily 
(from 1993 to 1994 and from 1996 to 1997) and a few texts of 
other newspapers. The vocabulary consists of 50,622 Chinese 
words. The full model is then compressed into a small model of 
about 1 MB size. 

Three test corpora are predefined. Corpus A (35,025 characters) 
is a political lecture given by the Chinese President JIANG 
Zemin. Corpus B (1,800 sentences with 23,310 characters) is 
from the Chinese National High-Tech 863Project, and Corpus C 
(375 sentences with 3,466 characters) is news from the web of 
PhoenixTV in Hong Kong (http://www.phoenixtv.com.cn). 

The compressed model is tested across a Chinese Pinyin-to-
character (note: Pinyin is the pronunciation of a character 
conversion system, and the results are given in the following 
sections. 

5.1 Performance of the Curving Method 

Table 2: The Accuracy (%) of Conversion Using 
Piecewise Linear Compression Method for Uni-gram 

Count 

Method               Corpus A B C Avr. 

Uncompressed model 92.02 83.51 86.79 87.44 

WORD Curving 91.89 82.95 86.50 87.11 

BYTE Curving 91.11 81.55 84.39 85.68 

In this experiment, only uni-gram is used for decoding. The 
uncompressed model use 4-byte data to store the occurring 
counts of uni-grams. As shown in Table 2, using WORD (2 bytes) 
or BYTE and the piecewise linear compression method can 
achieve almost the same accuracy as uncompressed uni-gram 
model. 

5.2 Compressed Model Performance 

Table 3: The Conversion Accuracy (%) of Compressed 
Model Compared with Uncompressed Model 

Model                Corpus A B C Aver. 

Full tri-gram model 

 (Size: 340 M) 
99.34 98.90 94.23 97.49 

Full bi-gram model  

(Size: 43 M) 
98.75 96.39 93.94 96.36 

Compressed Bi-gram model  

(Size: 940 K) 
97.07 90.94 92.03 93.35 

Table 3 shows the performance of compressed model compared 
with the full tri-gram model and the bi-gram model. It can be 
seen that the compressed model is much smaller than the full tri-
gram model and the bi-gram model, but the performance is 
comparable and good enough for applications in handheld 
devices. 

6. CONCLUSIONS 

With the booming development of the handheld devices, more 
and more applications should and will be ported to handheld 
devices. In this paper, a method for language model compression 
is proposed. Because of the poor storage and computation ability 
of the devices, the compression ratio of the method should be 
very high, to achieve that, the model is shrunken from the full 
model by a selective method, which analyzes the parameters of 
the model carefully and uses both the conditional probability and 
the importance of the unit to determine whether it should be 
reversed or not. Additionally, a curving technique is designed to 
reduce the size of the uni-gram counts. Furthermore, a codebook 
is used to restore the bi-gram probabilities. Our experiments 
show that though the size of the compressed model is only about 
1 MB, it is good enough to be used in handheld devices. 
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