International Symposium on Chinese Spoken Language Processing, pp. 247-250, Oct. 13-15, 2000, Beijing

IMPROVED STRATEGIES FOR INTELLIGENT
SENTENCE INPUT METHOD ENGINE SYSTEM

Ling JIN , Genging WU , Fang ZHENG , Wenhu WU
Center of Speech Technology, State Key Laboratory of Intelligent Technology and Systems,

Department of Computer Science & Technology, Tsinghua University, Beijing, 100084

{jinl, wgq, fzheng}@sp.cs.tsinghua.edu.cn

ABSTRACT

This paper describes a Chinese keyboard intelligent full-
sentence input method system based on tri-gram language model.
In this system, we use efficient algorithms to reduce the size of
the language model, accelerate the search and enhance the
accuracy. The n-gram model is presented in a novel structure,
which shrinks the model and enables it with look-ahead and
buffer techniques to reduce the times of visiting the disk to fetch
the n-gram unit and to adapt the language model to user domain
quickly. Besides that, we have designed an efficient dynamic
programming algorithm to segment input alphabetic sequence
into syllabic cells; thereby it can be fit for different input ways.

1. INTRODUCTION

The goal of our Input Method Engine (IME) system is to
translate a letter string into a Chinese sentence, where the letter
string can be a pinyin string, an initial string or a mixed pinyin
and initial string without any space in it, where both the initial
(without final followed) and pinyin can be regarded as a syllable
delegate. The first step of our IME system is segmentation, which
is, in other words, to insert necessary spaces in the boundaries of
syllable delegates. Different segmentation methods result in
different putative syllable delegates, so an effective searching
algorithm must be adopted for segmentation. We use an effective
dynamic programming algorithm for segmentation. To maximize
the number of letters involved in segmentation and to minimize
the number of outgoing syllable delegates, this algorithm can
achieve the best result by scanning letters only one pass.

In other IME systems, when entering a sentence, users must
choose from many word candidates. To avoid this disturbing
work, we use an algorithm based on maximum likelihood by
integrating n-gram language model. An Initial\Final tree structure
based word lexicon is used in this algorithm. Because the
synchronous syllable decoding algorithm sorts the paths by
partial scores, when comparing two kinds of paths together in
one stack, where one kind is the paths whose searching state
reach leaf nodes (word boundary) of the word-lexicon and the
other for the contrary circumstance, some potential paths will be
pruned. We use double-stacks to store each kind of paths

respectively to avoid this problem. And look-ahead cache
techniques are also used to accelerate the search marvelously.

To make the language model's size smaller, we choose a
relatively smaller glossary containing the most frequently used
words. To avoid the problem of data sparseness, we uplift the
discount threshold and normalize the counts of the words in our
modified back-off language model. In order to make it adaptable
for different kinds of people, we make two N-gram models: one
is the System model, and the other is the User model. Combining
user input and System model properly can adapt the whole model
to a specific field quickly without bringing too much instability.
In addition, the User model is much smaller than the System
model, which enables the flexibility in adaptation.

2. DYNAMIC PROGRAMMING FOR SYLLABLE
SEGMENTATION

2.1 Why
Algorithm?

We Need Dynamic Programming

Usually, we seldom use disjunctive letter among syllables when
entering a whole sentence by IME. Sometimes the result of
segmentation is ambiguous and it will make recognition accuracy
low. For example: "fangan", we can decode it into either "fan
'gan "(SEK) or "fang' an" (J5%). Therefore it's necessary to do
some segmentation after user input some letters. Because our
IME has to support many input methods, such as initial input,
pinyin input -** so the results of segmentation are syllable
delegates. Using general searching algorithms isn't effectual
enough. Here we use dynamic programming for segmentation.

2.2 Dynamic Programming Algorithm

In the dynamic programming algorithm, we need an optimal
principle. After referring to many IME systems, we define such
an optimal principle for calculating and searching.

Here suppose we want to segment M letters (input by user) into
N syllable delegates. First, we should make more and more
letters inputted by the user to take part in segmentation. Second,
try to find smaller N while in the condition in the first principle is
still met.

The advantages of using these two optimal principles are:

e It can take more letters into consideration in the
segmentation.

e It's fit for the input habit of users.

e Smaller N can make searching more effectively.

S=5S,..5
lowercase letter or a symbo . The disjunctive symbol “'” is
a compulsive disjunctive mark. Array D(/) : minimal disjunctive

parts composed by first I letters. Array C(/) : The first position of

the syllable D(J).

We can describe the algorithm as follow:

e D0)=0; D(1)=1; C(1)=0;

e D)= min{ D(-K)+1, where K+1 letters No. [-K+1
through 7 can make up a syllable delegate, 1<=K<=6,
K<=I}

* C@)=C(arg D).

Given one [, if a reasonable K cannot be found, we make

D@)=D(I-1) +1, C()=I; If there exists more than one K for each

I, we choose the smallest K. Because the longest syllable has 6

letters (such as “zhuang ”. “shuang), therefore we make K no

bigger than 6.

: User’s input stream where S; can be a

1 “@r

2.3 Outline Of Dynamic Programming

The expatiation of our dynamic programming algorithm is as
follows.

1. [Initialization. Let D/0]=1, C[0]=0 and define maximal
syllable numbers : MAXS= 50, make start position:
nowseat=1,

2. C/[nowseat]=-1, D[nowseat] =MAXS+1;

3. If letter S/nowseat] is a disjunctive symbol “'” , let D
[nowseat | = D[nowseat-1 |, C[nowseat] =nowseat, then
trun to step 5; otherwise go on with step 4;

4. Find the minimal K base on the optimal principal, let D
[nowseat] =D [nowseat-K] +1, C[nowseat] =nowseat-K+1;

5. Nowseat plus 1, if nowseat is smaller than the length of
total input letter, then turn back to step 2; If equal then
end.

3. LANGUAGE MODEL AND DECODING
ALGORITHM

In our IME system, when finishing the letters-to- syllable-
delegates segmentation step, the following step is to decode from
these syllable delegates to the most possible Chinese words based
on language model. If the scale (word number) of the language or
the syllables' number is big, normal search algorithm will be
infeasible. We use word lexicon tree to store word items instead
of word lattice and use syllables synchronous decoding algorithm
to speed up the search.

3.1 Language Model In IME System

The language model is used to decode from some syllable units
$=838,...5,
W =WW,...W, orChinese characters C =C,C,...C,

into only one Chinese word sequence

where Wl. =C l_i’ Actually , we want to find the maximal
1

likelihood W* such that:
W' =argmax P(W |S) =argmax P(W)P(S|W)

= arg max P(W)l_l P(S;O 1w,

where :

P(S{|w) = P(w|S])

1 w:Ck...Cl,SjDSyll(Cj),j:k...l
- 0 others

Syll (¢) are possible syllable set of character c.

In our IME system, we use double-stack syllables synchronous
algorithm for decoding [2][4].

3.1.1 Compression of language model

The scale of language model is large and sparse. It needs to
design a structure to make model smaller and more effective.
Here, we develop an index file to receive these points. In
considering the ease of IME adaptation, we store a unit’s
occurrence count of the training set in it.

!

Figure 1: Bi-gram storage demonstration

In figure 1, for bi-gram, each word has one index pointer
pointing to the head of this bi-gram unit’s store area. Effectively,
the whole bi-gram set is sorted by (wordl word2). In this way, it
can seek the target unit rapidly. The situation of tri-gram is
similar.

In N-gram model , many units’ occurrence times is zero, a good
way is to smooth them according to lower order’s N-grams [1].

So we should store the smoothing coefficient and occurrence
time for each unit. We make shared index because each unit's
coefficient and occurrence times have the same subscript, that we
cut half of the storage for index.

On the other hand, the smoothing technique can be used in the
compression of the language model. If the difference between the

probability p(W,,, ‘ W;W,,,) calculated from tri-gram model

directly and the probability Py (W, | W,W,,;) estimated

from lower order N-gram is small, it shows that
p(WHZ | WW;) carries not much additional information and

can be deleted. For simplification we assume that back-off

weights do not change while compressing. This method can
reduce the size of model about 10%.

3.1.2 Cache look-ahead

g . ¢
The probability of a given sentence ‘.. W,W, W, , W, ;....

can be calculated as
P(S) = ...P(W,py | WW,)EP(W,y | Wi Wigy)
(-1
while the smoothed probabilities P(Wl.+2 | WW,) are
evaluated by one for the these three smoothing formulae:
1) if the count C(Wl. W

i+1> W4y) 18 non-zero (indicating

(Wl-, Wi+1) is seen in the training data), the smoothing
formula is:
P(w,,, | Wiwi+l) =C(w;, W, ’Wi+2)/C(Wi’Wi+1)
(3-2)
2)if C(W,,W,,,,W,,,) is zero while C(W,,W,,;) is non-
zero(which ensures that the smoothing coefficient

aw,,wy,

) exists), the smoothing formula is :
P(Wi+2 ‘ Wi Wi+l) = a(wt > Wi+]) * P(Wi+2 ’ Wi+l)
(3-3)
3) if neither C(w,,w,,,w,,,) nor C(w,,w
zero, the smoothing formula is:
PW,y [wowiy) = P(We,y [W)
(3-4)
Most of the counts C(Wi, W, WA+2) are zero in the model

i+1° i

i+l i+l Wi+2) 1s non-

because of the data sparseness of tri-gram language model. It is
proofed in our experiment that more than 60% of smoothing tri-
gram cell probabilities are calculated by (3-4), which leads more
than 36% of two sequential cells probabilities to be estimated by
(3-4) (in case of that the two cells are independent).

Bi-gram probabilities P(w;4, | w;41) are calculated like
P(w,,, | w,w,,), but most of them are directly estimated from
C(w,,w,,) and C(w;) . If the sequential probabilities
P(Wi+2 ‘ WiWH-I) and P(Wi+3 ‘ Wi+lWi+2) are bOth CalCulated
by (3-3) while the corresponding bi-gram probabilities are
directly calculated from bi-gram cells and unigram cells, the data
stream is shown as following:
step/ to calculate P(w,,, |w,w,,,):

Loget C(W;, 1, Wips) s

2.get (W, W,,):

3. output

(0, W,10)* COWys W)/ O)
step I+1 to calculate P(w, ., | w,,,W,,,):

1. get C(W,,,,W,,3):

2. get (W, , Wips)s

3. output

a(w,,, Wi+2) * C(Wisyps Wi+3)/C(Wi+2) ;
step /+2....
C(w,,,,W,,,) is accessed in step I, and Q(W;,;,W,,,) is
the two cells have the same suffix
(Wi W +2), they should be stored together , so that when

accessed in step [+],

C(w,,,,W,,,) is fetched in step I , CY(Wi+1,Wi+2) can be

fetched in advance and buffered, which avoids repeating useless
search in step /+/ and enhance the search efficiency.

Analysis on the training data shows that cells in sentence will
occur again soon. In order to improve the performance of search,
buffer techniques are taken to store the cells' probabilities that
have been searched in the past. Our experiments show great
improvement in search efficiency[5].

3.2 Improved Word Lexicon Tree

The Word Search Tree (WST) was designed to reflect the
relations among all these in-vocabulary words so that the
redundancy for both the vocabulary storage is reduced [2].

In such a lexicon tree the traveling direction is always from the
parent node to its child node(s), so it can be stored in a linear
data structure, i.e., an array of nodes. It takes only several
seconds to establish a WST for 51, 200 words using a well-
defined algorithm.

In order for the system to adapt the user’s input easily, we should
memorize user’s input. If a word (or a phrase) isn’t in our word
lexicon, we should add this word (phrase) into word lexicon.
Add word continually will make lexicon tree grow with more
nodes. We use indexed arrays, instead of stack , to store word
lexicon, so inserting nodes will cause much memory movement.
It’'ll make IME respond user’s input delay. Therefore, we
improved the structure of the word lexicon(as figure 2):

¢ Let each node of the tree stand for one initial, one final
or one Chinese word instead of one syllable.

. Cut the original lexicon into several small lexicon trees.
We classified the whole model into 23 classes by
indexing the first letter of one initial or one final. Each
class makes one lexicon tree.

4. ADAPTATION

In order to make it adaptable for different kinds of people, we
take measures as follows: The N-gram model consists of two sub-
models, one is the system model, and the other is the user model
[3]. The system model is achieved from the training corpus,
which is a general model for all fields, and the user's input
combined with the system model forms the user model.
Combining user input's and the system model properly can make
it adapt the whole model to a specific field quickly without
bringing too much instability. In addition, the user model is
much smaller than the system model, which enables the
flexibility in adaptation.

m ong
a O]
()
CTR T
®. Syllable Note
O: Left Note

Figure 2: Improved lexicon tree

5. EXPERIMENT RESULTS
5.1 Inserting A Word Into Lexicon

Improved structure of word lexicon: we make several small
lexicons instead of one whole lexicon so as to decrease the
memory movements.

Old Improved
Lexicon Lexicon
Number of all notes 24197 40617
Node movements when inserting
a new word 12098.5 882.9
(average condition)

Table 1: Node movement

It can be seen that when inserting a word, the movement of
memories is decreased to about 7% of the original.

5.2 Memory Reading Of Language Model Unit

We test a cache area which has total 100 units, hash seeking
address , testing in trained texts. The result is:

Tri hit rate a(Wi Wi Win) Using cac.he/
. Before using
hit rate cache
(seconds)
4.95% 31.9% 2167/1284
Table 2: Experiment about new storage structure and cache
technique.

Although, the hit rate of Tri is not very high, but the hit rate of

G(Wl.,wi+l,w.+2) is pretty high. It can be seen from Table 2

1

that the speed can increase about 70%.

6. CONCLUSION

In our IME system, we use an efficient dynamic programming
algorithm to segment input alphabetic sequence into syllabic
cells, thereby it can be fit for different input ways. Improved
word lexicon can make memory movement decreased. Look-
ahead cache techniques are also used to accelerate the search
marvelously. Two N-gram models are used for adaptation. By
using these strategies, the performance of IME is improved
effectively.

7. REFERENCES

[1] Mou X.-L., Zhan J.-M., Zheng F. and Wu W.-H “The back-
off algorithm based N-gram language model, ” 5" National
Conference on Man-Machine Speech Communication
(NCMMSC-98), 206-209, 1998 (In Chinese)

[2] Ho.T-H. Yang , K-C. Huang, K-H “Improved search
strategy for large vocabulary continuous mandarin speech
recognition” Proceedings of IEEE International Conference
on Acoustic, Speech and Signal Processing, ICASSP9S,
1998.

[3] Wolfgang Reichl “Language model Adaptation Using
Minimum Discription Information, ” EuropSpeech 99 , v4 ,
pp 1791-1794.

[4] Zheng.F, Song Z.J, Xu M.X., etc “EasyTalk: A large-
vocabulary speaker-independent Chinese dictation machine”,
Proceedings of 6" European Conference on Speech
Communication and Techniques, EUROSPEECH’99.
Budapest, Hungary, 1999, v2, pp.819-822.

[5] S.M.Katz “Estimation of Probabilities from Sparse Data for
the Language model Component of a Speech Recognizer”.
In [EEE Transactions on Acoustics, Speech, and Signal
Processing 35(3), pp. 400-401, 1987.

