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Abstract 

In this paper, we propose a novel approach to robust speech 
recognition in noisy environments by discriminating the 
observation vectors. In conventional HMM-based speech 
recognition, all the observation vectors are treated with equal 
importance no matter how the corresponding speech segment 
is corrupted with noise. Our approach proposed here modifies 
the conventional decoder by weighting the likelihood scores 
for different observation vectors based on the signal to noise 
ratios (SNRs) of the corresponding speech frames when the 
probabilities of generating a sequence of observations are 
being calculated for some models. The proposed approach 
combined with spectral subtraction is evaluated with four 
different kinds of noises added to the clean speech. The 
experimental results show the superior performance of the 
proposed method over the method where only the spectral 
subtraction is applied, especially in the median SNR 
environments.  

1. Introduction 

One of the key issues in practical speech recognition is to 
improve the robustness against the mismatch between the 
training and testing environments [1]. The performance of 
speech recognition systems degrades greatly if there exists 
background noise, channel distortion, acoustic echo, or a 
variety of interfering signals. In this paper, we will focus on 
the environment in which the clean speech is corrupted with 
background noise. 

Many techniques have been developed to alleviate the 
recognition performance degradation, such as robust feature 
extraction, speech enhancement, feature compensation, model 
compensation, and so on [2, 3, 4, 5]. The speech enhancement 
is the easiest way in which the noise is removed from the input 
noisy speech before feature extraction. Then the feature 
vectors extracted from the enhanced speech are decoded by the 
recognition models trained with clean speech, just like that the 
feature vectors are extracted from clean speech. 

Hidden Markov Models (HMMs) and Gaussian mixture 
density functions are practically predominant speech 
recognition techniques [6]. In such systems, the probability of 
generating a sequence of observation vectors for some models 
is calculated as the product of the probabilities of generating 
each observation with an equal weight. In other words, each 
observation vector is treated with equal importance. 

In noisy environments, clean speech and background noise 
are both time-varying. So the distortion of noisy speech is also 

time-varying -- speech is corrupted slightly at some time, and 
corrupted violently at other time. After speech enhancement, 
some enhanced "clean" speech is achieved. The enhanced 
speech is not the same as the true clean speech without 
distortion. While noisy speech is corrupted more violently, the 
enhanced speech is farther from the true clean speech. Of 
course observation vectors extracted form the slightly-
corrupted speech should be more believable than those from 
the violently-corrupted speech in recognition. If the 
observation vectors extracted from speech with different levels 
of distortions can be discriminated instead of being treated 
with equal importance, the performance of the speech 
recognition system will be increased. 

In this paper, we propose an approach to emphasizing the 
feature vectors extracted from slightly-corrupted speech by 
modifying conventional HMM-based decoder with likelihood 
scores weighted for different observation vectors. The signal 
to noise ratio (SNR) of the corresponding speech is used for 
indicating the degree of how the speech is uncorrupted. 

In our speech recognition system, the input noisy speech is 
enhanced with the spectral subtraction (SS) method [4, 7] 
firstly, and SNRs for all the speech frames are estimated. Then 
feature vectors are extracted from the enhanced speech and 
decoded with acoustic models. The proposed approach is then 
applied to the decoding process. 

This paper is organized as follows. Section 2 describes the 
front-end module in our speech recognition system, including 
speech/non-speech detection, spectral subtraction method, and 
SNR estimation algorithm. And Section 3 describes the 
proposed weighting algorithm. In section 4, the speech 
databases are described and the experimental results are given. 
Finally, in the last section conclusions are drawn. 

2. Front-end Module 

Figure 1 shows a block diagram of the front-end module of 
our recognition system. In the front-end module, a 
speech/non-speech detector (SND) method based on the 
logarithmic energy is used to classify frames as speech or non-
speech firstly. Then the noisy spectrums (NS) are estimated for 
future use in the spectrum subtraction. And then the SNRs are 
estimated based on the logarithmic energies of the enhanced 
speech and of the estimated noise. Finally, not only MFCC-
based coefficients but also the SNRs are sent to the decoder.  

In the back-end module, the conventional HMM-based 
decoder is modified to accept SNRs to weight the likelihood 
scores for the observation vectors. 
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2.1. Quantile based speech/non-speech Detection  

The detection of speech pauses is a difficult task particularly 
when the SNR is low. In our system, we use an approach to 
speech/non-speech detection derived from [8] based on the 
order statistics (OS) [9] filters. 

Two OS filters are applied to the logarithmic energy of the 
signal to obtain an estimation of the local SNR of the speech 
signal. The first one is a median filter used to track the 
background noise level B . And the other one takes the 0.9-
quantile ( )0.9Q  to track the speech level. ( )Q q , a general 

expression for ( )0.9Q , is calculated as follows. For 

logarithmic energies ( ) ( ), ,E t L E t L− +…  of 2 1L +  frames 

around the frame t  to be analyzed, let ( )E r , 

where 0,1, ,2r L= … , be the corresponding values sorted in an 

ascending order, then ( )E L  is the output of the median filter, 

and q-quantile is defined as 

( ) ( )2Q q E qL=                                  (1) 

where x    denotes the greatest integer smaller than x . The 

difference between the speech level ( )0.9Q  and the 

background noise level B  is used as quantile-based estimation 
of the locale SNR (QSNR) of the signal. 

Finally, the QSNR is compared with a threshold to make 
the speech/non-speech decision. If the QSNR is greater than 
the threshold the frame is marked as speech, otherwise as non-
speech. For a non-speech frame, the background noise level 
B  is updated using the median value obtained for this 
window. 

And more detailed description of this speech/non-speech 
detection can be found in [8]. 

2.2. Noise estimation 

Noise estimation is based on the result of speech/non-speech 
detection. Let ( ),S tω  be the power spectrum at the frequency 

ω  at the t-th frame of the input signal, and ( ),N tω  be the 

power spectrum of the estimated noise at the frequency ω  at 
the t-th frame. Only when the SND classifies the current frame 
as non-speech, the noise power spectrum is adapted with a 
forgetting factor 0.05λ =  as follows 

( )
( ) ( ) ( )

( )
, 1 1 , for non-speech

,
for speech, ;

N t S t
N t

N t

λ ω λ ω
ω

ω

 − + −
= 


；

 (2)  

2.3. Spectral subtraction 

A traditional non-linear spectral subtraction algorithm in the 
power spectrum domain is used for noise reduction in the 
front-end as follows [7] 

( ) ( ) ( ) ( ){ }ˆ , max , , , ,S t S t N t S tω ω α ω β ω= −          (3) 

where ( )ˆ ,S tω  is the compensated power spectrum, 1.1α =  

the over-subtraction factor, and 0.1β =  the spectral floor. 

2.4. Frame SNR estimation 

The frame SNR is different from QSNR. It is based on the 
result of noise estimation and spectral subtraction. And it 
indicates the degree how the current speech frame is 
uncorrupted with noise. The frame SNR is defined as 

( )
( )
( )

ˆ ,
10log

,

S t
SNR t

N t
ω

ω

ω

ω

 
 =
 
 

∑
∑

                   (4) 

3. Weighting Algorithm 

3.1. Weighting algorithm  

In a conventional HMM-based speech recognition system, 
given a sequence of observations ( )1 2X , , , Tx x x= …  and a 

sequence of states ( )0 1 2, , , , Ts s s sΦ = … , the probability of 

generating the observations sequence X for the states sequence 
Φ  is given by 

( ) ( )1,
1

P X
T

j j j j
j

a b x−
=

Φ =∏                         (5) 

where ,i ja  is the transition probability from state is  to state 

js  while ( )jb x  the probability of generating observation x  

for state js  [6]. In this expression, each observation is treated 

equally. 
In order to emphasize the observations for slightly-

corrupted speech, the above-mentioned expression is modified 
in our system as 

( ) ( )
1

1,
1

P X
j

T

j j j j
j

a b x
γ+

−
=

 Φ =  ∏                (6) 

where jγ  is an observation vector emphasizing weight, and its 

value is determined according to the SNR of the 
corresponding speech frame for the observation jx . A bigger 

jγ  indicates a bigger importance of the observation jx  in 

decision. 

3.2. Weighting factor 

The weighting factor jγ  should be an indicator of the degree 

how the corresponding speech frame for the observation jx  is 

uncorrupted with noise. It is defined as a function for SNR of 
the speech frame. In our system, the speech frames of which 
the SNRs are higher than 20dB are considered as being less 
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Figure 1: Block diagram of the front-end module 
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corrupted, and thus are emphasized greatly. On the other side, 
those speech frames of which the SNRs are lower than 0db are 
considered as being corrupted violently, and hence are not 
emphasized. And the other speech frames are emphasized in 
different levels according to their SNRs. jγ  is chosen as a 

sigmoid function of the SNR of jx  

( ) 10
1 exp

2

j

jSNR x

δ
γ =

 − 
+ − 

  

                (7) 

where δ  is a factor used to adjust the emphasizing degree, 
and it is experimentally chosen as 1.0 in our system. Figure 2 
describes the relationship between SNR and γ . 

4. Experimental Results 

4.1. Speech databases and setup 

Experiments are done with four different kinds of noises added 
to clean speech, respectively. The clean speech is an isolate 
words database by 20 speakers, 10 females and 10 males. 
Almost each speaker speaks 100 Chinese names for 4 times. 
The database contains 7,893 isolate word utterances in total. 
Four different kinds of noises, say the babble noise, the factory 
noise, the pink noise, and the white noise, from Noisex [10] 
are added to the clean speech with different amplitude 
modulation (SNR = -5, 0, 5, 10, 15, 20dB). 

The experiments are carried out on a speaker-independent 
Chinese name recognition system. 1,429 di-IFs [11] with 3 
states and a mixture of 8 Gaussian pdfs per state and a silence 
model trained with HMM Tool Kit [12] are used in this system. 
The acoustic model employs the 42-dimension features 
(containing 13 MFCC coefficients plus the logarithmic frame 
energy, as well as their first order and second order 
derivatives).  

The clean and noisy data are evaluated on the conventional 
decoder as the baseline firstly. Then the spectral subtraction 
method and the proposed method are applied respectively and 
compared. 

4.2. Experimental results and discussion 

Experimental results for clean speech and four kinds of 
artificial noisy data are showed in Table 1 and Tables 2-5, 

 Baseline 
Clean 97.20 

Table 1: Word accuracy (%) for clean speech. 

SNR(dB) Baseline SS Proposed ERR 
20 96.91 96.82 96.87 1.6 
15 95.35 96.03 96.08 1.3 
10 89.83 92.19 92.76 7.3 
5 72.28 81.47 83.64 11.7 
0 37.37 54.52 59.97 12.0 
-5 12.68 23.94 26.39 3.2 

Table 2: Word accuracy (%) for the Babble noisy data. 

SNR(dB) Baseline SS Proposed ERR 
20 96.51 97.03 97.06 1.0 
15 93.71 95.36 95.68 6.9 
10 85.04 91.59 92.27 8.1 
5 59.43 78.79 81.39 12.3 
0 24.46 49.46 55.30 11.6 
-5 7.24 16.83 19.89 3.7 

Table 3: Word accuracy (%) for the Factory noisy data. 

SNR(dB) Baseline SS Proposed ERR 
20 96.16 96.79 96.95 5.0 
15 92.83 95.79 95.98 4.5 
10 82.95 91.31 92.24 10.7 
5 55.99 79.64 81.98 11.5 
0 20.10 48.45 54.49 11.7 
-5 6.1 13.92 18.02 4.8 

Table 4: Word accuracy (%) for the Pink noisy data. 

SNR(dB) Baseline SS Proposed ERR 
20 93.28 95.02 95.19 3.4 
15 87.08 92.36 92.95 7.7 
10 71.19 84.76 86.2 9.4 
5 39.93 66.31 69.98 10.9 
0 11.59 31.98 37.60 8.3 
-5 3.96 8.36 10.04 1.8 

Table 5: Word accuracy (%) for the White noisy data. 

respectively. In Tables 1-5, "SS" denotes the spectral 
subtraction method while "Proposed" the weighting algorithm 
combined with the spectral subtraction. "ERR" means "error 
reduction rate" of the proposed method compared with the 
spectral subtraction method. 

It can be seen that the proposed method outperforms the 
spectral method in all kinds of experimental environments. 
The average relative reduction of the error rate for all 
experiments is about 7.1%. For higher SNR noisy 
environments (SNR≥15dB), the improvement is slighter with 
an average ERR of 3.9%. The reason is that almost all 
observation vectors are slightly-corrupted and then 
emphasized. The emphases for different observations are 
counteracted. And the results are similar for low SNR noisy 
environments (SNR<0dB) where almost all observations are 
violently-corrupted and then not emphasized. 

In particular, the weighting algorithm is proved effective 
in the median SNR noisy environments (0dB ≤SNR≤10dB) 
where the average ERR for all kinds of  noisy environments is 
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 Figure 2: Weighting factor. 
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10.5%. In this case, the corrupted speech frames have different 
SNRs and the corresponding observations are distorted with 
different degrees. The proposed weighting algorithm increases 
the weights for the likelihood scores for the slightly-distorted 
observations in recognition. Then the decision is more reliable 
and the performance is improved. 

5. Conclusions 

The paper proposes an approach to robust speech recognition 
in noisy environments by weighting the likelihood scores for 
the observation vectors according to the SNRs for the 
corresponding speech frames. The proposed method 
emphasizes the importance for the observations of the slightly-
corrupted speech in recognition. The experimental results 
show that the proposed method is superior over the one where 
only the spectral subtraction is applied, especially for median 
SNR cases (0dB ≤SNR≤10dB). 
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