
A PHRASE-LEVEL PIECEWISE LINEAR SCALING ALGORITHM FOR MELODY MATCH
IN QUERY-BY-HUMMING SYSTEMS

Wenxiao Cao*,Danning Jiang**, Jue Hou*, Yong Qin**, Thomas Fang Zheng*, Yi Liu*

*Center for Speech and Language Technologies, Division of Technical Innovation and Development

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University, Beijing, China

**IBM China Research Lab, Beijing, China
{caowx, houj}@cslt.riit.tsinghua.edu.cn, {jiangdn, qinyong}@cn.ibm.com, {fzheng, eeyliu}@tsinghua.edu.cn

ABSTRACT

The Query-by-Humming (QBH) system allows users to retrieve
songs by singing/humming. In this paper we propose a phrase-
level piecewise linear scaling algorithm for melody match.
Musical phrase boundaries are predicted for the query to split it to
phrases. The boundaries of melody fragment corresponding to each
phrase are allowed for adjusting in a limited scope. The algorithm
employs Dynamic Programming and Recursive Alignment to
search for the minimal piecewise matching cost upon Linear
Scaling at phrase-level. Our experimental results on 5223 melody
database show that the proposed algorithm outperforms traditional
algorithms. The proposed algorithm gives significant
improvements of 17.0%, 14.7% and 4.8% with respect to Linear
Scaling, Dynamic Time Wrapping and Recursive Alignment in
top-1 rate, respectively. The results show that the proposed
algorithm is more efficient than the previous algorithms.

Index Terms— Phrase-level, Piecewise Linear Scaling,
Query-by-Humming

1. INTRODUCTION

The Query-by-Humming (QBH) system allows users to retrieve
songs by singing/humming a fragment of melody. It provides a
natural interface for users because in many cases the user cannot
remember any key words of the song except the melody.
 In recent years, some research work showed the advantage of
frame-based matching approaches, in which the melody match is
performed on the frame-level pitch contours instead of the note
sequences [1]. The most commonly used algorithm is Dynamic
Time Warping (DTW) [2], searching for the path of alignment
with the minimum pitch distance. However, providing a straight-
forward way to compute melodic similarities, DTW fails to
measure the distance of rhythms. The path with minimum pitch
distance would be invalid at all because the corresponding rhythms
were very different between the query and the target melody.

To solve this problem, Jang et al. [3] proposed Linear Scaling
(LS) algorithm, which simply stretches or compresses the query
contour and match it point-by-point with the target contour. It
assumes the query and melody are linearly correlated with each
other and this is proved to be even better than HMM-based
algorithm [4]. However, due to the fact that the real contour
deviates from reference rhythm, the above assumption is often too

strong and leads to a lot of mismatches in melody matching.
Besides LS, Recursive Alignment (RA) is used to incorporate
rhythm measures in similarity computing [5]. The algorithm
recursively splits the query contour into two segments from the
middle, performs LS match within each segment, and searches for
the optimal split point in the candidate melody. Experiments
reported in [5] showed that RA outperformed both DTW and LS,
but it still has the drawback that no evidence shows that splitting at
the middle of contour is the best way for piecewise matching.

In this paper, we propose an approach of piecewise Linear
Scaling. Musical phrase boundaries are predicted and the query is
split to phrases. The boundaries of melody fragment corresponding
to each phrase are allowed for adjusting in limited scope. Then
Dynamic Programming (DP) or RA algorithm is used to search the
minimal piecewise matching cost upon LS match at phrase-level.
Similar to spoken languages, music is also organized with a
hierarchy structure. A “musical phrase” in this structure is a
section of music that is relatively self-contained and coherent over
a medium time scale [6]. While singing, the singer usually breathes
at musical phrase boundaries, which often cause rhythm variations.
Thus splitting the query to phrases is a better way for piecewise LS
match.

The paper is organized as follows. Section 2 describes our
proposed melody match algorithm. Section 3 presents the QBH
system used to evaluate the algorithm. Experimental results are
given in Section 4 and we draw our conclusion in Section 5.

2. THE PIECEWISE LINEAR SCALING MATCH

In a frame-based QBH system, the query signal is first processed
to extract the pitch contour (in semitone scale), represented as
Q = (q1; q2; ¢ ¢ ¢ ; qm) . Each candidate in melody database is
represented as a sequence of notes, S = (s1; s2; : : : ; sn), where
si = (pi; di); 1 · i · n, pi and di are the pitch and duration of si,
respectively. After normalizing the candidate melody to the same
key scale and tempo with query, the match algorithm needs to
score the candidate by minimizing the cumulative pitch distance
along the path of alignment between the query contour and the
melody note sequence. The alignment path always starts from
(q1; s1), but may ends at any (qm; si)(1 < i · n), as user sings
only a fragment of the melody. The system outputs the top-N
results by sorting the match scores.

942978-1-4244-4291-1/09/$25.00 ©2009 IEEE ICME 2009

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 12, 2009 at 21:12 from IEEE Xplore. Restrictions apply.

2.1. Phrase segmentation

The aim of phrase segmentation is to segment the query contour
into several fragments, and each fragment roughly corresponds to a
musical phrase. The singer usually breathes at phrase boundaries.
Thus a relatively longer unvoiced segment is observed in the query
signal. Figure 1 shows the music score and pitch contour of a
fragment of the famous “Twinkle, Twinkle, Little Star” composed
by Mozart. The comparison of the music score and query pitch
contour shows that query phrases segmented by unvoiced segment
are consistent with “musical phrases” in the score.

0 1 2 3 4 5 6 7 8
55

60

65

70

seconds

music score

query pitch contour

pi
tc

h

Phrase 1 Phrase 2

Figure 1. An example of “musical phrases”

In phrase segmentation, we first detect all unvoiced segments
longer than a threshold Tsil, and then compose the initial set of
phrases with the fragments between each two adjacent unvoiced
segments. To prevent short fragments caused by frequent
discontinuities, short fragments are combined with one of their
neighbors by a one-pass, left-to-right combination algorithm. For
each element in the initial phrase set, if its duration is longer than
threshold Tph, the algorithm directly moves to the next element.
Otherwise, the algorithm will compare the duration of unvoiced
segments before and after this phrase. If the one before it is longer,
this phrase will be merged with the next phrase, otherwise it will
be merged with the previous phrase.

After phrase segmentation, the query contour can be regarded
as a concatenation of phrases:

Q = (ph1; ph2; : : : ; phk) (1)
where each phi (1 · i · k) is represented as:

phi = [qui ; qui+1) = (qui ; qui+1; ¢ ¢ ¢ ; qui+1¡1) (2)
where ui is the beginning frame of phi, and ui+1 ¡ 1 is the end
frame.

2.2. Phrase-level piecewise linear scaling algorithm

After segmenting the query into phrases, the proposed algorithm
first locates a set of candidate notes in the melody for each iu ,
represented as C(ui). C(u1) = fs1g for i = 1. For 1 < i · k + 1,
C(ui) is composed of melody notes which are close to ui in the
time axis:

 C(ui) = fsj jtui ¡ dc ·
j¡1X
k=1

dk · tui + dcg (3)

where dc is a duration constant to allow for a certain degree of
imperfect rhythm. Figure 2 shows a query pitch contour along with
the corresponding melody. The query has been segmented into two
phrases: ph1 = [u1; u2), ph2 = [u2; u3), and the arrow headed
line shows which notes are the match candidates of u2 and u3
respectively. The figure shows that C(u2) = fs4; s5; s6g and
C(u3) = fs8; s9; s10g.

0 1 2 3 4 5 6 7 8 9 10

60

62

64

66

68

70

seconds

s1

s2

s3
s4

s5 s6
s7

s8

0 1 2 3 4 5 6 7 8 9 10
55

60

65

70

melody note sequence

query pitch contour

pi
tc

h

ph1 ph2

u1

u2
u3

seconds

pi
tc

h

s9
s10

Figure 2. A demonstration of note candidates locating for query

phrase boundaries

After C(ui) is set, each query phrase is assigned with several
relevant melody segments as match candidates. The match cost
between each phrase and its candidate is calculated with the LS
algorithm, thus the alignment path within each phrase is always a
straight line. The proposed algorithm searches for an optimal
segmentation of melody for alignment with the query phrases and
minimize the overall match cost. The overall match cost of the
query and the melody is calculated as the sum of the LS match
scores of each phrase and its corresponding melody fragment.
Thus the optimal melody segmentation (c¤1; c¤2; ¢ ¢ ¢ ; c¤k+1) should
minimize the following cost function:

f(c1; c2; ¢ ¢ ¢ ; ck+1) =
kX

i=1

LS([qui ; qui+1); [ci; ci+1)) (4)

where ci 2 C(ui) (1 · i · k + 1) is the i-th note candidate for
boundary ui. LS([qui ; qui+1); [ci; ci+1)) is the LS match score for
the query phrase [qui ; qui+1) and the melody fragment [ci; ci+1).
 Various methods can be used for searching the
(c¤1; c

¤
2; : : : ; c

¤
k+1) . By employing Dynamic Programming and

Recursive Alignment as search algorithms, we got two variations
of the proposed algorithm: PHDP and PHRA.

2.2.1. The PHDP algorithm

The PHDP algorithm generates a cost matrix D0::k;0::h

h = max
1·i·k+1

jC(ui)j). The initial conditions are: D0;0 = 0 ,

D0;j = INF 1 · j · h), and Di;0 = INF 1 · i · k). For
each 1 · i · k and 1 · j · jC(ui+1)j, Di;j is calculated as:

Di;j = min
l

(Di¡1;l + LS([qui ; qui+1); [cl(ui); cj(ui+1))) (5)
where LS([qui ; qui+1); [cl(ui); cj(ui+1))) is the LS match score
between the query phrase [qui ; qui+1) and the melody fragment
[cl(ui); cj(ui+1)) ; cl(ui) and cj(ui+1) are the l-th and j-th

943

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 12, 2009 at 21:12 from IEEE Xplore. Restrictions apply.

element in C(ui) and C(ui+1), respectively. The final match cost
is given as min

j
Dk;j.

2.2.2. The PHRA algorithm

Unlike the bottom-up fashion of PHDP, PHRA algorithm
optimizes in a top-down approach. RA was first proposed in [5],
and our algorithm differs from it in recursively splitting the query
only at phrase boundary nearest to the middle of the query contour.
Given maximum depth r, the final match score for this algorithm
can be given by min

j
RA([qu1 ; quk+1); [s1; cj(uk+1)); 1), where

function RA([qui ; quj); [scw ; scv); d) is a recursive function for
matching query phrase [qui ; quj) with melody fragment [scw ; scv)
at depth d. It’s calculated as follows:

(1) Calculate SLS = LS([qui ; quj); [scw ; scv));
(2) If d = r or uj ¡ ui = 1 then return SLS;
(3) Split the query contour into two parts at the phrase

boundary um nearest to the middle. Then minimize the
match cost:
SRA =min

j
(RA([qui ; qum); [scw ; cj(um)); d + 1)

+ RA([qum ; quj); [cj(um); scv); d + 1))
 (6)

(4) return min(SLS ; SRA).
The algorithm optimizes the match cost by recursively splitting the
query contour until the maximal recursion depth r is reached.

3. QBH PROTOTYPE SYSTEM

We developed a QBH prototype system to evaluate the
effectiveness of the proposed algorithm. The system consists of
three components: pitch extraction, melody normalization, and
melody match, as described in Figure 3. When a query is sent to
the system, the pitch extraction is first performed to estimate the
pitch contour of the query. Then, the pitch contour is used to
estimate the key shift and tempo ratio between the query and each
candidate in the melody database, and normalize the candidates to
make them have the same key and tempo with the query. Finally,
the melody match algorithm is performed to score each normalized
candidate and give the top-n list.

Figure 3. Paradigm of the QBH prototype system

3.1. Pitch extraction

A modified autocorrelation algorithm is used to estimate the pitch
contour. Before pitch extraction, the query signal is first decoded
into a sequence of notes/silence segments by performing a
statistical note transcription algorithm [7]. Unlike traditional

autocorrelation algorithm, the modified pitch extraction algorithm
searches for the pitch related peak only in the area associated with
the decoded note rather than search globally. Our previous work
showed that the statistical note transcription algorithm is able to
reduce the frequency errors effectively in various acoustic
conditions [7]. Thus the pitch extraction algorithm also inherits
this advantage and tends to be robust against noise. The pitch
contour is finally converted into the semitone scale.

3.2. Melody normalization

Candidates in melody database need to be normalized to deal with
different keys and tempos before melody match. In our system,
this is done via a heuristic search procedure similar with that
proposed in [2]. The key shift b is initialized as the pitch distance
between the first decoded note of the query and the first note of the
candidate. Then the following search procedure is performed to
estimate the optimal tempo ratio in [0:5; 2:0]:

(1) Initialization:® = 1:0,

span =

½
1:0=N; if ® > 1:0
0:5=N; if ® < 1:0

 (7)

where N is a preset constant for splitting the tempo ratio
value interval [0:5; 2:0] into 2£N candidates, witch is 10
in our experiments.

(2) Compute the distances between the query and the
candidates normalized with ® ,® + span , and ®¡ span ,
represented as d0 , d1 , and d¡1 , respectively. (In our
experiments, the distance was calculated with LS)

(3) If d0 = minfd0; d1; d¡1g or d0 reaches the boundary of
[0:5; 2:0], stop; otherwise, go to (4).

(4) Update ®:
If d1 = minfd0; d1; d¡1g, then ® = a + span;
else if d¡1 = minfd0; d1; d¡1g, then ® = a¡ span.
Go to (2).

 In our experiments, the above search procedure was
accelerated by buffering the distances calculated in (2), so repeated
distance calculations can be avoided. Based on the estimation of ®,
we continue to refine the estimation of key shift b with another
heuristic search procedure. Given the estimation of key shift and
tempo ratio, the candidate melody S = (s1; s2; ¢ ¢ ¢ ; sn) is then
normalized as S0 = (s01; s

0
2; ¢ ¢ ¢ ; s0n), where s0i = (pi + b; ® ¤ di).

4. EXPERIMENTS

4.1. Database

The query dataset used in our experiments was the ThinkIT QBH
query corpus, which was one of the evaluation sets of 2008
MIREX [8] QBH competitions. The query set contains 355 queries
recorded by ordinary singers, most of which are sung with lyrics,
and cover 106 melodies of Chinese popular songs. The average
length of the queries was 12.4s, and saved as 8k Hz, 16 bit PCM
files.

Our melody database consisted of two parts. The first part
was 106 melodies from ThinkIT QBH melody corpus. These were
the target melodies of the queries. These 106 melodies were
manually segmented into 2,213 segments, each of which roughly
corresponded to a musical “sentence” or “phrase”. Only the

Query signal

Melody
Database

Pitch Extraction

Melody
Normalization

Melody Match

Top-n list

944

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 12, 2009 at 21:12 from IEEE Xplore. Restrictions apply.

starting point of each melodic segment was regarded as a match
entry. The second part of the database contained 5,117 EsAC [9]
melodies as noises, and they were segmented into 29,199
segments in such a way that each line in the original EsAC
melody file corresponded to one segment in the database. All
together our database contained 5,223 melodies and 31,412
melodic segments.

4.2. Experimental results

In our experiments, the melody match accuracy was measured
using both top-1 accurate rate and Mean Reciprocal Rate (MRR).
The MRR was commonly used as a standard measurement of
QBH performance in the MIREX competitions [8]. The MRR can
be calculated as the average of the reciprocal rank of the target
melody:

 MRR = (
NX

q=1

1

cq
)=N (8)

where qc is the rank of the target melody for the q-th query. In the
experiments, if the target melody is not in the top 20 returns, the
corresponding reciprocal term is set to be 0. The value of MRR
varies between 0 and 1.

Table 1 gives a comparison of melody match accuracy of the
proposed algorithms (PHDP and PHRA), LS, DP, and RA. It is
seen that the proposed approach outperforms the traditional
methods of LS, DP, RA with 17.0%, 14.7%, 4.8% in top-1 rate,
respectively. The reasons are that PHDP and PHRA base on better
segmentation of query for piecewise matching. While LS is one
case in DP, and RA is better in catching the global shape of the
query and melody [5]. Thus DP is better than LS and RA is better
than DP.

Furthermore, it is shown that PHRA outperforms PHDP. The
relative increase of top-1 rate and MRR are 7% and 4%. This is
because that recursive alignment optimizes in a top-down fashion,
and as a result, is more capable to match the global shape of query
and melody. Thus top-down fashion is better for searching phrase-
level optimal piecewise matching.

Table 1. The accuracy of each melody match algorithm.
 LS DP RA PHDP PHRA

Top-1 rate 0.575 0.587 0.642 0.651 0.673
MRR 0.608 0.621 0.669 0.682 0.701

In addition, an interesting result was found in our experiment.

The PHRA outperformed the RA algorithm proposed in [5], and
the relative increase of top-1 rate and MRR is 4.8% and 4.8%. The
reason is that the original RA algorithm always splits the query in
the middle, but no evidence showed that the rhythm variations are
more likely to happen in the middle than other places of the query.
In contrast, the PHRA algorithm splits the query only at the
estimated phrase boundaries, where the rhythm variations are
more likely to happen because people often breathe in such places.

Our experiments also showed that our proposed algorithm
improves the recognition accuracy without bring large additional
computation. The computation time related to Table 1 for PHRA
only increase 5% than RA while PHDP even reduce 6% than RA.

5. CONCLUSIONS

In this paper, we proposed a phrase-level piecewise linear scaling
algorithm for melody match. In this approach, musical phrase
boundaries are predicted and the query is split to phrases. The
boundaries of the melody fragment related to each phrase are
allowed to be adjusted in restrained scope. We applied Dynamic
Programming or Recursive Alignment algorithm to search for the
minimal piecewise matching cost upon LS match at the phrase-
level. The experiments on melody database with 5223 melodies
proved the effectiveness of proposed algorithm. It increases the
top-1 rate with 17.0%, 14.7% and 4.8% compared to LS, DP, and
RA, respectively.The relative increase of MRR is 15.3%, 12.9%,
and 4.8% respectively. The results show that the proposed
algorithm is more efficient than the previous algorithms for
melody match.

6. ACKNOWLEDGMENT

We would like to thank Liu Wen of IBM China Research
Laboratory, Beijing, for his help in running experiments. This
work was supported by joint research grant of IBM and Tsinghua
University 2007-2008.

7. REFERENCES

[1] R.B. Dannenberg, W.P. Birmingham, G. Tzanetakis, et al.,
“The MUSART Testbed for Query-by-Humming Evaluation,”
Proc. of International Symposium of Music Information Retrieval
(ISMIR), 2003.

[2] J.R. Jang and M.Y. Gao, “A Query-by-Singing System based
on Dynamic Programming,” Proc. of International Workshop on
Intelligent Systems Resolutions, pp. 85-89, Dec. 2000.

[3] J.R. Jang, H.R. Lee, M.Y. Kao, “Content-based Music
Retrieval Using Linear Scaling and Branch-and-Bound Tree
search,” Proc. of IEEE International Conference on Multimedia
and Expo, August 2001.

[4] J.R. Jang, C.L Hsu, H.R Lee, “Continuous HMM and its
Enhancement for Singing/Humming Query Retrieval”, Proc. of
ISMIR, 2005.

[5] X. Wu, M. Li, J. Liu, et al., “A Top-down Approach to
Melody Match in Pitch Contour for Query by Humming,” Proc. of
International Symposium on Chinese Spoken Language
Processing, Dec. 2006.

[6] WikiPedia page: http://en.wikipedia.org/wiki/Phrase_(music)

[7] D.N. Jiang, M. Picheny, and Y. Qin, “Voice-melody
Transcription under a Speech Recognition Framework,” Proc. of
ICASSP 2007.

[8] http://www.music-ir.org/mirex/2008/index.php/Main_Page

[9] http://www.cs.uu.nl/events/dech1999/dahlig/

945

Authorized licensed use limited to: Tsinghua University Library. Downloaded on November 12, 2009 at 21:12 from IEEE Xplore. Restrictions apply.

