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ABSTRACT 

 
The Query-by-Humming (QBH) system allows users to retrieve 
songs by singing/humming. In this paper we propose a phrase-
level piecewise linear scaling algorithm for melody match. 
Musical phrase boundaries are predicted for the query to split it to 
phrases. The boundaries of melody fragment corresponding to each 
phrase are allowed for adjusting in a limited scope. The algorithm 
employs Dynamic Programming and Recursive Alignment to 
search for the minimal piecewise matching cost upon Linear 
Scaling at phrase-level. Our experimental results on 5223 melody 
database show that the proposed algorithm outperforms traditional 
algorithms. The proposed algorithm gives significant 
improvements of 17.0%, 14.7% and 4.8% with respect to Linear 
Scaling, Dynamic Time Wrapping and Recursive Alignment in 
top-1 rate, respectively. The results show that the proposed 
algorithm is more efficient than the previous algorithms. 
 

Index Terms— Phrase-level, Piecewise Linear Scaling, 
Query-by-Humming 
 

1. INTRODUCTION 
 
The Query-by-Humming (QBH) system allows users to retrieve 
songs by singing/humming a fragment of melody. It provides a 
natural interface for users because in many cases the user cannot 
remember any key words of the song except the melody.  
        In recent years, some research work showed the advantage of 
frame-based matching approaches, in which the melody match is 
performed on the frame-level pitch contours instead of the note 
sequences [1]. The most commonly used algorithm is Dynamic 
Time Warping (DTW) [2], searching for the path of alignment 
with the minimum pitch distance. However, providing a straight-
forward way to compute melodic similarities, DTW fails to 
measure the distance of rhythms. The path with minimum pitch 
distance would be invalid at all because the corresponding rhythms 
were very different between the query and the target melody.  

To solve this problem, Jang et al. [3] proposed Linear Scaling 
(LS) algorithm, which simply stretches or compresses the query 
contour and match it point-by-point with the target contour. It 
assumes the query and melody are linearly correlated with each 
other and this is proved to be even better than HMM-based 
algorithm [4]. However, due to the fact that the real contour 
deviates from reference rhythm, the above assumption is often too 

strong and leads to a lot of mismatches in melody matching. 
Besides LS, Recursive Alignment (RA) is used to incorporate 
rhythm measures in similarity computing [5]. The algorithm 
recursively splits the query contour into two segments from the 
middle, performs LS match within each segment, and searches for 
the optimal split point in the candidate melody. Experiments 
reported in [5] showed that RA outperformed both DTW and LS, 
but it still has the drawback that no evidence shows that splitting at 
the middle of contour is the best way for piecewise matching.  

In this paper, we propose an approach of piecewise Linear 
Scaling. Musical phrase boundaries are predicted and the query is 
split to phrases. The boundaries of melody fragment corresponding 
to each phrase are allowed for adjusting in limited scope. Then 
Dynamic Programming (DP) or RA algorithm is used to search the 
minimal piecewise matching cost upon LS match at phrase-level.  
Similar to spoken languages, music is also organized with a 
hierarchy structure. A “musical phrase” in this structure is a 
section of music that is relatively self-contained and coherent over 
a medium time scale [6]. While singing, the singer usually breathes 
at musical phrase boundaries, which often cause rhythm variations. 
Thus splitting the query to phrases is a better way for piecewise LS 
match.  

The paper is organized as follows. Section 2 describes our 
proposed melody match algorithm. Section 3 presents the QBH 
system used to evaluate the algorithm. Experimental results are 
given in Section 4 and we draw our conclusion in Section 5. 
 

2. THE PIECEWISE LINEAR SCALING MATCH 
 
In a frame-based QBH system, the query signal is first processed 
to extract the pitch contour (in semitone scale), represented as 
Q = (q1; q2; ¢ ¢ ¢ ; qm) . Each candidate in melody database is 
represented as a sequence of notes, S = (s1; s2; : : : ; sn), where 
si = (pi; di); 1 · i · n, pi and di are the pitch and duration of si, 
respectively. After normalizing the candidate melody to the same 
key scale and tempo with query, the match algorithm needs to 
score the candidate by minimizing the cumulative pitch distance 
along the path of alignment between the query contour and the 
melody note sequence. The alignment path always starts from 
(q1; s1), but may ends at any (qm; si)(1 < i · n), as user sings 
only a fragment of the melody. The system outputs the top-N 
results by sorting the match scores.  
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2.1. Phrase segmentation 
 
The aim of phrase segmentation is to segment the query contour 
into several fragments, and each fragment roughly corresponds to a 
musical phrase. The singer usually breathes at phrase boundaries. 
Thus a relatively longer unvoiced segment is observed in the query 
signal. Figure 1 shows the music score and pitch contour of a 
fragment of the famous “Twinkle, Twinkle, Little Star” composed 
by Mozart. The comparison of the music score and query pitch 
contour shows that query phrases segmented by unvoiced segment 
are consistent with “musical phrases” in the score. 
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Figure 1. An example of “musical phrases” 

In phrase segmentation, we first detect all unvoiced segments 
longer than a threshold Tsil, and then compose the initial set of 
phrases with the fragments between each two adjacent unvoiced 
segments. To prevent short fragments caused by frequent 
discontinuities, short fragments are combined with one of their 
neighbors by a one-pass, left-to-right combination algorithm. For 
each element in the initial phrase set, if its duration is longer than 
threshold Tph, the algorithm directly moves to the next element. 
Otherwise, the algorithm will compare the duration of unvoiced 
segments before and after this phrase. If the one before it is longer, 
this phrase will be merged with the next phrase, otherwise it will 
be merged with the previous phrase. 

After phrase segmentation, the query contour can be regarded 
as a concatenation of phrases: 

Q = (ph1; ph2; : : : ; phk)                                                     (1) 
where each phi (1 · i · k) is represented as: 

phi = [qui ; qui+1) = (qui ; qui+1; ¢ ¢ ¢ ; qui+1¡1)                (2)           
where ui is the beginning frame of phi, and ui+1 ¡ 1 is the end 
frame.  
 
2.2. Phrase-level piecewise linear scaling algorithm 
 
After segmenting the query into phrases, the proposed algorithm 
first locates a set of candidate notes in the melody for each iu , 
represented as C(ui). C(u1) = fs1g for i = 1. For 1 < i · k + 1, 
C(ui) is composed of melody notes which are close to ui in the 
time axis: 

 C(ui) = fsj jtui ¡ dc ·
j¡1X
k=1

dk · tui + dcg             (3) 

where dc is a duration constant to allow for a certain degree of 
imperfect rhythm. Figure 2 shows a query pitch contour along with 
the corresponding melody. The query has been segmented into two 
phrases: ph1 = [u1; u2), ph2 = [u2; u3), and the arrow headed 
line shows which notes are the match candidates of u2  and u3 
respectively. The figure shows that C(u2) = fs4; s5; s6g  and 
C(u3) = fs8; s9; s10g. 
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Figure 2. A demonstration of note candidates locating for query 

phrase boundaries 

After C(ui) is set, each query phrase is assigned with several 
relevant melody segments as match candidates. The match cost 
between each phrase and its candidate is calculated with the LS 
algorithm, thus the alignment path within each phrase is always a 
straight line. The proposed algorithm searches for an optimal 
segmentation of melody for alignment with the query phrases and 
minimize the overall match cost. The overall match cost of the 
query and the melody is calculated as the sum of the LS match 
scores of each phrase and its corresponding melody fragment. 
Thus the optimal melody segmentation (c¤1; c¤2; ¢ ¢ ¢ ; c¤k+1) should 
minimize the following cost function: 

f(c1; c2; ¢ ¢ ¢ ; ck+1) =
kX

i=1

LS([qui ; qui+1); [ci; ci+1))      (4) 

where ci 2 C(ui) (1 · i · k + 1) is the i-th note candidate for 
boundary ui. LS([qui ; qui+1); [ci; ci+1)) is the LS match score for 
the query phrase [qui ; qui+1) and the melody fragment [ci; ci+1). 
        Various methods can be used for searching the 
(c¤1; c

¤
2; : : : ; c

¤
k+1) . By employing Dynamic Programming and 

Recursive Alignment as search algorithms, we got two variations 
of the proposed algorithm: PHDP and PHRA.  
 
2.2.1. The PHDP algorithm 
 
The PHDP algorithm generates a cost matrix D0::k;0::h 

h = max
1·i·k+1

jC(ui)j ). The initial conditions are: D0;0 = 0 , 

D0;j = INF  1 · j · h), and Di;0 = INF  1 · i · k). For 
each 1 · i · k and 1 · j · jC(ui+1)j, Di;j is calculated as: 

Di;j = min
l

(Di¡1;l + LS([qui ; qui+1); [cl(ui); cj(ui+1))) (5)                      
where LS([qui ; qui+1); [cl(ui); cj(ui+1))) is the LS match score 
between the query phrase [qui ; qui+1) and the melody fragment 
[cl(ui); cj(ui+1)) ; cl(ui)  and cj(ui+1)  are the l-th and j-th 
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element in C(ui) and C(ui+1), respectively. The final match cost 
is given as min

j
Dk;j. 

 
2.2.2. The PHRA algorithm 
 
Unlike the bottom-up fashion of PHDP, PHRA algorithm 
optimizes in a top-down approach. RA was first proposed in [5], 
and our algorithm differs from it in recursively splitting the query 
only at phrase boundary nearest to the middle of the query contour. 
Given maximum depth r, the final match score for this algorithm 
can be given by min

j
RA([qu1 ; quk+1); [s1; cj(uk+1)); 1), where 

function RA([qui ; quj ); [scw ; scv ); d) is a recursive function for 
matching query phrase [qui ; quj ) with melody fragment [scw ; scv ) 
at depth d. It’s calculated as follows: 

(1) Calculate SLS = LS([qui ; quj ); [scw ; scv ));        
(2) If  d = r or uj ¡ ui = 1 then return SLS; 
(3) Split the query contour into two parts at the phrase 

boundary um nearest to the middle. Then minimize the 
match cost: 
SRA =min

j
(RA([qui ; qum); [scw ; cj(um)); d + 1)

+ RA([qum ; quj ); [cj(um); scv ); d + 1))
    (6) 

(4) return min(SLS ; SRA). 
The algorithm optimizes the match cost by recursively splitting the 
query contour until the maximal recursion depth r is reached.  
 

3. QBH PROTOTYPE SYSTEM 
 
We developed a QBH prototype system to evaluate the 
effectiveness of the proposed algorithm. The system consists of 
three components: pitch extraction, melody normalization, and 
melody match, as described in Figure 3. When a query is sent to 
the system, the pitch extraction is first performed to estimate the 
pitch contour of the query. Then, the pitch contour is used to 
estimate the key shift and tempo ratio between the query and each 
candidate in the melody database, and normalize the candidates to 
make them have the same key and tempo with the query. Finally, 
the melody match algorithm is performed to score each normalized 
candidate and give the top-n list.  

 
Figure 3. Paradigm of the QBH prototype system 

 
3.1. Pitch extraction 
 
A modified autocorrelation algorithm is used to estimate the pitch 
contour. Before pitch extraction, the query signal is first decoded 
into a sequence of notes/silence segments by performing a 
statistical note transcription algorithm [7]. Unlike traditional 

autocorrelation algorithm, the modified pitch extraction algorithm 
searches for the pitch related peak only in the area associated with 
the decoded note rather than search globally. Our previous work 
showed that the statistical note transcription algorithm is able to 
reduce the frequency errors effectively in various acoustic 
conditions [7]. Thus the pitch extraction algorithm also inherits 
this advantage and tends to be robust against noise. The pitch 
contour is finally converted into the semitone scale.  
 
3.2. Melody normalization 
 
Candidates in melody database need to be normalized to deal with 
different keys and tempos before melody match. In our system, 
this is done via a heuristic search procedure similar with that 
proposed in [2]. The key shift b  is initialized as the pitch distance 
between the first decoded note of the query and the first note of the 
candidate. Then the following search procedure is performed to 
estimate the optimal tempo ratio in [0:5; 2:0]:  

(1) Initialization:® = 1:0, 

span =

½
1:0=N; if ® > 1:0
0:5=N; if ® < 1:0

                                       (7) 

where N  is a preset constant for splitting the tempo ratio 
value interval [0:5; 2:0] into 2£N  candidates, witch is 10 
in our experiments. 

(2) Compute the distances between the query and the 
candidates normalized with ® ,® + span , and ®¡ span , 
represented as d0 , d1 , and d¡1 , respectively. (In our 
experiments, the distance was calculated with LS) 

(3) If d0 = minfd0; d1; d¡1g or d0  reaches the boundary of 
[0:5; 2:0], stop; otherwise, go to (4).  

(4) Update ®: 
If d1 = minfd0; d1; d¡1g, then ® = a + span; 
else if d¡1 = minfd0; d1; d¡1g, then ® = a¡ span. 
Go to (2). 

        In our experiments, the above search procedure was 
accelerated by buffering the distances calculated in (2), so repeated 
distance calculations can be avoided. Based on the estimation of ®, 
we continue to refine the estimation of key shift b with another 
heuristic search procedure. Given the estimation of key shift and 
tempo ratio, the candidate melody S = (s1; s2; ¢ ¢ ¢ ; sn) is then 
normalized as S0 = (s01; s

0
2; ¢ ¢ ¢ ; s0n), where s0i = (pi + b; ® ¤ di). 

 
4. EXPERIMENTS 

 
4.1. Database 
 
The query dataset used in our experiments was the ThinkIT QBH 
query corpus, which was one of the evaluation sets of 2008 
MIREX [8] QBH competitions. The query set contains 355 queries 
recorded by ordinary singers, most of which are sung with lyrics, 
and cover 106 melodies of Chinese popular songs. The average 
length of the queries was 12.4s, and saved as 8k Hz, 16 bit PCM 
files.  

Our melody database consisted of two parts. The first part 
was 106 melodies from ThinkIT QBH melody corpus. These were 
the target melodies of the queries. These 106 melodies were 
manually segmented into 2,213 segments, each of which roughly 
corresponded to a musical “sentence” or “phrase”. Only the 
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starting point of each melodic segment was regarded as a match 
entry. The second part of the database contained 5,117 EsAC [9] 
melodies as noises, and they were segmented into 29,199 
segments in such a way that each line in the original EsAC 
melody file corresponded to one segment in the database. All 
together our database contained 5,223 melodies and 31,412 
melodic segments.  
 
4.2. Experimental results 
 
In our experiments, the melody match accuracy was measured 
using both top-1 accurate rate and Mean Reciprocal Rate (MRR). 
The MRR was commonly used as a standard measurement of 
QBH performance in the MIREX competitions [8]. The MRR can 
be calculated as the average of the reciprocal rank of the target 
melody: 

 MRR = (
NX

q=1

1

cq
)=N                                                   (8) 

where qc is the rank of the target melody for the q-th query. In the 
experiments, if the target melody is not in the top 20 returns, the 
corresponding reciprocal term is set to be 0. The value of MRR 
varies between 0 and 1.  

Table 1 gives a comparison of melody match accuracy of the 
proposed algorithms (PHDP and PHRA), LS, DP, and RA. It is 
seen that the proposed approach outperforms the traditional 
methods of LS, DP, RA with 17.0%, 14.7%, 4.8% in top-1 rate, 
respectively. The reasons are that PHDP and PHRA base on better 
segmentation of query for piecewise matching. While LS is one 
case in DP, and RA is better in catching the global shape of the 
query and melody [5]. Thus DP is better than LS and RA is better 
than DP.  

Furthermore, it is shown that PHRA outperforms PHDP. The 
relative increase of top-1 rate and MRR are 7% and 4%. This is 
because that recursive alignment optimizes in a top-down fashion, 
and as a result, is more capable to match the global shape of query 
and melody. Thus top-down fashion is better for searching phrase-
level optimal piecewise matching. 

Table 1. The accuracy of each melody match algorithm. 
 LS DP RA PHDP PHRA

Top-1 rate 0.575 0.587 0.642 0.651 0.673 
MRR 0.608 0.621 0.669 0.682 0.701 

 
In addition, an interesting result was found in our experiment.  

The PHRA outperformed the RA algorithm proposed in [5], and 
the relative increase of top-1 rate and MRR is 4.8% and 4.8%. The 
reason is that the original RA algorithm always splits the query in 
the middle, but no evidence showed that the rhythm variations are 
more likely to happen in the middle than other places of the query. 
In contrast, the PHRA algorithm splits the query only at the 
estimated phrase boundaries, where the rhythm variations are 
more likely to happen because people often breathe in such places. 

Our experiments also showed that our proposed algorithm 
improves the recognition accuracy without bring large additional 
computation. The computation time related to Table 1 for PHRA 
only increase 5% than RA while PHDP even reduce 6% than RA. 
 

5. CONCLUSIONS 
 
In this paper, we proposed a phrase-level piecewise linear scaling 
algorithm for melody match. In this approach, musical phrase 
boundaries are predicted and the query is split to phrases. The 
boundaries of the melody fragment related to each phrase are 
allowed to be adjusted in restrained scope. We applied Dynamic 
Programming or Recursive Alignment algorithm to search for the 
minimal piecewise matching cost upon LS match at the phrase-
level. The experiments on melody database with 5223 melodies 
proved the effectiveness of proposed algorithm. It increases the 
top-1 rate with 17.0%, 14.7% and 4.8% compared to LS, DP, and 
RA, respectively.The relative increase of MRR is 15.3%, 12.9%, 
and 4.8% respectively. The results show that the proposed 
algorithm is more efficient than the previous algorithms for 
melody match. 
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