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Abstract

We propose a state-space synthesis for infinite horizon
decentralized LQG control problems over TCP erasure
channels with state feedback under sufficient conditions
on convergence and stability. The decentralized sys-
tem under consideration consists of two interconnected
systems with unidirectional information communication
from system 1 to system 2. The finite horizon counter-
part of this problem was proposed previously, along with
two modified Riccati recursions. When the mean packet
drop rate E(N) satisfies two given conditions on conver-
gence and stability, we show that the sequence of optimal
finite horizon costs converges and construct an optimal
infinite horizon synthesis.

1 Introduction

Recent advances in communication networks and VLSI
have made it possible to provide services remotely. In
fact, an increasing number of current services and future
deployments, such as distributed database management,
grid computing, and the smart grid, are now being built
over the cloud, making it inevitable that the control, or
management, of these services is also built on top of com-
munication networks. While these interconnections facil-
itate the provision of ubiquitous services, the differences
between a decentralized and a centralized system, such
as the topology and the link conditions of a network, now
pose a great challenge for system design.

In this paper, we consider a state feedback Linear
Quadratic Gaussian (LQG) control problem with specific
network topology and link conditions. For the topology,
we consider a two-player/agent problem where player 1
observes system state x1 and decides control action u1

that affects system states x1 and x2. Player 2 observes
system states x1 and x2 and decides control action u2

that affects system state x2. With only this sparsity, or
topology, constraint, Swigart and Lall [4] [5] [6] showed
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that an explicit state space solution exists for the opti-
mal decentralized controller in both the finite and infinite
horizon cases.

For the link condition, we model the arrival of con-
trol packets through (controller) communication chan-
nels suffering from spatiotemporal Bernoulli distributed
packet drops as in [2]. In practice, this phenomenon is
generally caused by shadowing or fading in wireless com-
munications. When packet drop acknowledgements are
available to players, this information structure is referred
to as a TCP protocol. An explicit state space solution
for optimal LQG control over TCP erasure channels is
proposed in [2]. Here we consider that there is no packet
drop in (sensor) communication channels.

Here we further extend the boundary of decentralized
optimal control over TCP erasure channels to the infi-
nite horizon case as in Problem 3 in Section 2. Recently
Chang and Lall [1] showed that there exists an explicit
state space solution for optimal two-player decentralized
finite horizon LQG control over TCP erasure channels.
As opposed to the finite horizon problem, stability plays
a critical role here. We pose the problems on stability
in Section 2. In Section 4, we provide a general con-
dition with three assumptions that characterizes an op-
timal infinite horizon policy. In the following sections,
we show when these assumptions are met in our prob-
lem. We first repeat the finite horizon optimal solutions
in Section 5 from [1]. We then propose conditions when
the sequence of finite horizon decentralized optimal costs
converge, with a similar approach to [2]. We finally give
a synthesis for the controller and prove that it actually
minimizes the infinite horizon cost.

2 Problem Formulation

We use the following notations. For system models, we
use superscript to denote spatial subsystems and sub-
script to denote time indices. We use x0:t as an abbre-
viation of (x0, . . . , xt). In a centralized system, for each
nonnegative time index t ∈ Z+, xt ∈ R

n denotes the
state, and ut ∈ R

m the control action. The system dy-
namics are as follows:

xt+1 = Axt + BNtut + vt, (1)

where exogenous noise vt ∼ N (0,Σv) i.i.d. and the
initial state x0 ∼ N (0,Σs), independent of vt. The
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link condition of the actuator channels is modeled by
Nt = diag(νt), where νt = (ν1

t , ν2
t , · · · , νm

t ). νj
t ∼

Bernoulli(ν̄j) denotes the i.i.d. Bernoulli random binary
variable modeling the random information drop on j-th
actuator of the actuator channels at time t. We assume
0 < ν̄j ≤ 1 for every j.

In the two-player decentralized setting, we consider two
interconnected systems with unidirectional information
communication from system 1 to system 2. The system
state xt = (x1

t , x
2
t ) consists of the substates of two sub-

systems with x1
t ∈ R

n1 , x2
t ∈ R

n2 , and n = n1 + n2.
The control action ut = (u1

t , u
2
t ) consists of the control

actions of two players with u1
t ∈ R

m1 , u2
t ∈ R

m2 , and
m = m1 + m2. The explicit system dynamics are as
follows:

[

x1
t+1

x2
t+1

]

=

[

A11 0
A21 A22

] [

x1
t

x2
t

]

+

[

B11 0
B21 B22

] [

N1
t 0

0 N2
t

] [

u1
t

u2
t

]

+

[

v1
t

v2
t

]

, (2)

where the exogenous noise vt = (v1
t , v2

t ) with
[

v1
t

v2
t

]

∼ N

([

0
0

]

,

[

Σ1
v 0

0 Σ2
v

])

,

i.i.d. for all t ∈ Z+. The link condition of the actuator
channel i is modeled by N i

t = diag(νi1
t , . . . , νimi

t ). For
convenience, we let

A =

[

A11 0
A21 A22

]

, B =

[

B11 0
B21 B22

]

, and

Nt =

[

N1
t 0

0 N2
t

]

, νt = (ν11
t , . . . , ν1m1

t , ν21
t , . . . , ν2m2

t ).

where ν11
t = ν1

t , ν12
t = ν2

t , . . . , ν21
t = ν

(m1+1)
t , and so on.

Suppose m ∈ Z+ and J ⊂ {1, . . . ,m}. Define the
diagonal matrix NJ ∈ R

m×m by

(NJ )ii =

{

1 if i ∈ J,

0 otherwise.

For any J ⊂ {1, . . . ,m}, suppose NJ is an instance of
packet drop Nt. We then have

Pr(NJ ) =





∏

j∈J

ν̄j









∏

j∈/J

(1 − ν̄j)



 .

Since Nt is i.i.d. over time t, we drop the subscript t
when appropriate. Similar notation is adopted when NJ

is an instance of packet drop rates N i
t with i ∈ {1, 2}.

Definition 1. For any linear operator f : R
l×l 7→ R

p×q,
define the operator EN : (Rl×l 7→ R

p×q) 7→ R
p×q by

EN (f(N)) =
∑

J∈2ℑ Pr(NJ )f(NJ ).

We list several similar problems for optimal control
over TCP erasure channels over finite/infinite horizon
and centralized/decentralized framework.

Problem 2. (Finite Horizon Centralized/Decentralized
Problems) The objective of finite horizon problems is to
find the minimum cost minµ JT (µ) =

min
µ

E

{

T−1
∑

t=0

(

xT
t Qxt + uT

t NtRNtut

)

+ xT
T QT xT

}

(3)

over the set of policies µ, where Q ≥ 0, QT ≥ 0, R > 0.
In (3), the expectation is taken over x0, v0:T−1, N0:T−1.

• In centralized problems, addressed in [2], the system
dynamics follow (1), µ = {µt | t ∈ {0, 1, . . . , T − 1}},
ut = µt(It) and

It = {x0:t, u0:t−1, N0:t−1}. (4)

• In decentralized problems, addressed in [1], the sys-
tem dynamics follow (2), µ = {µi

t | i ∈ {1, 2}, t ∈
{0, 1, . . . , T − 1}}, u1

t = µ1
t (I

1
t ), u2

t = µ2
t (I

2
t ), and

I1
t = {x1

0:t, u
1
0:t−1, N

1
0:t−1},

I2
t = {x0:t, u

2
0:t−1, N0:t−1}.

(5)

Problem 3. (Infinite Horizon Cetralized/Decentralized
Problems) The objective of infinite horizon problems is
to find the minimum cost

min
µ

J∞(µ) = min
µ

(

lim
T→∞

1

T + 1
JT

)

(µ) (6)

over the set of policies µ, where Q ≥ 0, QT ≥ 0, R > 0.

• In centralized problems, addressed in [2], the system
dynamics follow (1), µ = {µ0, µ1, . . .}; the control
actions follow ut = µt(It); the information states It

are defined as (4).

• In decentralized problems, addressed in this paper,
the system dynamics follow (2), µ = (µ1, µ2) with
µ1 = {µ1

0, µ
1
1, . . .} and µ2 = {µ2

0, µ
2
1, . . .}; the control

actions follow u1
t = µ1

t (I
1
t ) and u2

t = µ2
t (I

2
t ); the

information states I1
t and I2

t are defined as (5).

In this paper, we extend the finite horizon solution to
the infinite horizon problem by taking the horizon length
T → ∞. A similar approach can be found in [2] when
the centralized Problem 2 is extended to the centralized
Problem 3.

Regarding the issue of stability, one should note that
the synthesis problem in (6) may be infeasible, for both
the centralized and decentralized case. For example, A
system with unstable A and Nt = 0 for all t would result
in an infinite cost, regardless of the controller chosen. On
the other hand, the synthesis problem reduces to a reg-
ular centralized LQG problem or the decentralized LQG
problem proposed by [6], when Nt = I for all t and proper
reachability and stabilizability constraints hold, which is
always feasible.
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The definition for stability is not clear in the case when
the packet drop is random. Consider a linear dynamical
system as in (1) and suppose the controller is given by
the linear dynamics

ξt+1 = AK
t (N1

t )ξt + BK
t (N1

t )x1
t ,

ut = CKξt + DKx1
t ,

(7)

where ξ0 = 0, AK
t and BK

t depend on N1
t through obser-

vations. The superscript K here denotes that AK
t , BK

t ,
CK

t , and DK
t are state-space realizations of the controller.

The closed-loop map is given by
[

xt+1

ξt+1

]

= Acl(Nt)

[

xt

ξt

]

+ vcl , (8)

where

Acl(Nt) =

[

A + BNt[D
K 0] BNtC

K

[BK
t (N1

t ) 0] AK
t (N1

t )

]

, vcl =

[

vt

0

]

.

(9)
Here E(xt) = 0 and E(ξt) = 0 because E(x0) = 0 and
ξ0 = 0. Note that for certain sample-path of {Nt},
the closed-loop state may not be bounded, even when
Acl(Nt) is stable for all Nt.

An infinite horizon policy is feasible when the closed-
loop map is stable, as follows.

Definition 4. A closed-loop map zt+1 = Acl(Nt)zt + vcl

with E(zt) = 0 for all t ∈ Z+ is stable if limt→∞ cov(zt)
is bounded.

3 Main Results

We first define an operator to simplify the notation in
the main Theorems.

Definition 5. Define the modified algebraic Riccati op-
erator as

R(P,A,B,Q,R, E(N)) = Q + AT PA − AT PB

× EN (N){EN (N(R + BT PB)N)}−1
EN (N)BT PA.

and the modified Riccati recursion as

Pt+1 = R(Pt, A,B,Q,R, E(N)),

where N is a diagonal random matrix with Nii Bernoulli
distributed with mean EN (N)ii.

We are now ready to state the main Theorems, to be
proved later. In the first Theorem, we provide a sufficient
condition for the modified Riccati recursions to converge
for all initial conditions.

Theorem 6. (Convergence) If there exists two pairs
(K,P ) and (V, Y ) such that P > 0, Y > 0, and

P > EN ((A − BNK)T P (A − BNK)

+ Q + KT NRNK), (10)

Y > EN2((A22 − B22N2V )T Y (A22 − B22N2V )

+ Q22 + V T N2R22N2V ), (11)

then for any initial condition P0 ≥ 0 and Y0 ≥ 0, the
modified Riccati recursions

Pt+1 = R(Pt, A,B,Q,R, EN (N)), (12)

Yt+1 = R(Yt, A
22, B22, Q22, R22, EN2(N2)), (13)

converge to unique positive semidfinite fixed points P∞

and Y∞ of the modified Riccati equations, respectively.

Next we give a sufficient condition for stability.

Theorem 7. (Stability) Consider a linear dynamical
system as in (1) with the controller as in (7). The closed-
loop system (8) is stable if there exists

S > 0, S > EN

{

AclSAT
cl

}

. (14)

In the third theorem, we provide a controller synthesis
for the decentralized system given the sufficient condi-
tions in Theorem 6 and Theorem 7 hold.

Theorem 8. (Synthesis) Consider the decentralized sys-
tem in Problem 3. Suppose the packet drop rates EN (N)
are such that the MAREs (10) and (11) hold, then Pt

and Yt in the recursion (12) and (13) converge to P∞

and Y∞, respectively. With these P∞ and Y∞, let the
decentralized controller gains be

K∞ =
(

EN (N(R + BT P∞B)N)
)−1

EN (N)BT P∞A,
(15)

J∞ =
(

EN2(N2(R22 + B22,T Y∞B22)N2)
)−1

× EN2(N2)B22T
Y∞A22. (16)

A controller synthesis is given by (7) where

AK
t (N1

t ) = A22 − B21N1
t K12

∞ − B22
E(N2)K22

∞ , (17)

BK
t (N1

t ) = A21 − B21N1
t K11

∞ − B22
E(N2)K21

∞ , (18)

CK =

[

−K12
∞

J∞ − K22
∞

]

, (19)

DK =

[

−K11
∞ 0

−K21
∞ −J∞

]

. (20)

Suppose the closed-loop map satisfies (14), then the con-
troller is optimal, with the optimal cost being

min
µ

J∞(µ) = trace

([

P 11
∞ P 12

∞

P 21
∞ Y∞

]

Σv

)

. (21)

The optimal controllers are as follows. For controller 1,

ξt+1 = AK
t (N1

t )ξt + BK
t (N1

t )x1
t ,

u1
t = −K11

∞x1
t − K12

∞ξt,

and for controller 2,

ξt+1 = AK
t (N1

t )ξt + BK
t (N1

t )x1
t ,

u2
t = −K21

∞x1
t − K22

∞ξt − J∞(x2
t − ξt),
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where ξ0 = 0 and N1
t is known to controllers.

Theorem 8 is a natural extension to [6]. When no
packets are lost, Nt = I for all t, thereby reducing this
problem and solution to those in [6]. On the other hand,
when there is only one player, the problem and solution
here reduces to those when packets never drop in sen-
sor communication channels, in [2]. The reachability and
stabilizability constraints in [6] and [2] are not required
here as Theorem 6 is a stronger condition than those con-
straints. This can be shown by taking the expectation in
(10) into two terms as a function of EN (N) and cov(N)
and applying properties of discrete time Lyapunov equa-
tions, and similarly for (11).

In the centralized case, [2] and [3] proposed Numeri-
cal methods to calculate (10) and (12) using semidefinite
programming. The same approach can be applied here
to calculate (11), (13), and (14) numerically.

4 Synthesis from DP Solutions

Here we provide a general framework that characterizes
an optimal infinite horizon set of policies.

Lemma 9. Suppose gk : S 7→ R, ŵ ∈ S, f̂ : S 7→ R, and

1. mk ≤ gk(y) for all y ∈ S.

2. limk→∞ mk = f̂(ŵ).

3. limk→∞ gk(y) = f̂(y) for all y ∈ S.

Then ŵ minimizes f̂ .

Proof. We will show that f̂(ŵ) ≤ f̂(y) for all
y ∈ S. Suppose not, then there exists some z such that
f̂(ŵ) > f̂(z). Let hk = mk−gk(z). Then limk→∞ hk > 0.
However, hk ≤ 0 for all k. This is a contradiction.

Corollary 10. Suppose S and H
k with k ∈ Z+ are sets.

Let ŵ ∈ S, and w0, w1, . . . be a sequence with wk ∈ H
k.

Let Qk : S 7→ H
k, f̂ : S 7→ R, and fk : H

k 7→ R be any
functions. Suppose further that

1. wk minimizes fk.

2. limk→∞ fk(wk) = f̂(ŵ).

3. for all y ∈ S, limk→∞ fk(Qky) = f̂(y).

Then ŵ minimizes f̂ .

Proof. This is evident from Lemma 9 with mk =
fk(wk) and gk = fk ◦Qk, where ◦ denotes function com-
position.

In our particular problem, fk represents the finite hori-
zon cost function divided by its horizon, i.e. Jk/(k + 1),
wk represents the set of optimal finite horizon policies µ
with horizon k + 1, which will be given in Theorem 11,

and f̂ represents the infinite horizon cost function J∞. S

and H
k represent the set of feasible infinite horizon poli-

cies and finite horizon policies with horizon k + 1. As we
will see next, we let the function Qk be a natural pro-
jection from S to H

k by taking the first k actions and
dropping the rest.

Note that in Corollary 10, any infinite horizon policy
ŵ that satisfies assumption 2 is optimal. It might not be
unique or linear, and we did not provide an explicit form
for any ŵ. We will construct a ŵ by taking the limit of
the sequence of the set of optimal finite horizon policies
wk, when it exists, in Section 6. In the following sections,
we verify whether and when the assumptions in Corollary
10 hold for our specific problem. Assumptions 1, 2, and
3 will be considered in Sections 5, 7, and 7 respectively.

5 Finite Horizon Solutions

In this section, we repeat the result from [1], which pro-
vides optimal policies for finite horizon decentralized con-
trol over TCP erasure channels with state feedback.

Theorem 11. Let Pt ∈ R
n×n, Yt ∈ R

n2×n2 , and rt ∈ R

satisfy the following recursions

Pt = R(Pt+1, A,B,Q,R, EN (N)), (22)

Yt = R(Yt+1, A
22, B22, Q22, R22, EN2(N2)), (23)

rt = rt+1 + trace

([

P 11
t+1 P 12

t+1

P 21
t+1 Yt+1

]

Σv

)

, (24)

with PT = QT , YT = P 22
T , and rT = 0. Define Jt and Kt

to be

Kt =
(

EN (N(R + BT Pt+1B)N)
)−1

EN (N)BT Pt+1A,
(25)

Jt =
(

EN2(N2)(N2(R22 + B22,T Yt+1B
22)N2)

)−1

× EN2(N2)B22T
Yt+1A

22. (26)

The optimal controller is given by (7) with ξ0 = 0,

AK
t (N1

t ) = A22 − B21N1
t K12

t − B22
EN2(N2)K22

t , (27)

BK
t (N1

t ) = A21 − B21N1
t K11

t − B22
EN2(N2)K21

t , (28)

CK =

[

−K12
t

Jt − K22
t

]

, (29)

DK =

[

−K11
t 0

−K21
t −Jt

]

. (30)

The optimal cost minµ JT (µ) is

T
∑

t=1

trace

([

P 11
t P 12

t

P 21
t Yt

]

Σv

)

+ trace

([

P 11
0 P 12

0

P 21
0 Y0

]

Σs

)

.

According to (7), the control policy µ1 is given by

u1
t = −K11

t x1
t −

t−1
∑

i=0

(K12
t AK

t−1 · · ·A
K
i+1B

K
i )x1

i , (31)
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and similarly for µ2 and u2
t . Note that the set of policies µ

depends on N1
t with t ∈ Z+ through AK

t and BK
t . These

N1
t are known to the controllers through observations..

The sequence of optimal finite horizon costs divided
by their horizon, minµ JT (µ)/(T +1), does not necessar-
ily converge as T → ∞. This sequence corresponds to
fk(wk) in Corollary 10. We consider when this sequence
converges as T → ∞ in the next section.

6 Convergence of Modified Riccati Re-

cursions and Finite Horizon Costs

We first consider the convergence of the modified Riccati
recursions of Pt and Yt. We then show that when Pt and
Yt converge, the set of policies converges to an infinite
horizon policy, and the sequence of optimal average costs
converges. .

Definition 12. Define the operator gN (P ) for P ≥ 0 by

gN (P ) = R(P,A,B,Q,R, E(N)),

where A, B, Q, R are given with Q ≥ 0 and R > 0.

Theorem 13. Let the operator Φ(K,P ) = EN (FT PF +
V ) where F = A − BNK and V = Q + KT NRNK.
Suppose there exists matrices K̄ and P̄ > 0 such that
P̄ > Φ(K̄, P̄ ), then the sequence Pt+1 = gN (Pt) con-
verges to a unique positive semidefinite fixed point P̃ of
the modified Riccati equation P = gN (P ) for any initial
condition P0 ≥ 0.

Proof. See [3] for proof of a similar result.

In our decentralized problem, we need to find sufficient
conditions for both modified Riccati recursions (12) and
(13) to converge.

Proof. (Theorem 6) Given that there exists a pair
(K,P ) such that P > 0 and P > EN ((A−BNK)T P (A−
BNK) + Q + KT NRNK), then modified Riccati recur-
sion (12) converges to a unique fixed point P∞ for any
P0 ≥ 0. Similarly, if there exists a pair (V, Y ) such
that Y > 0 and Y > EN2((A22 − B22N2V )T Y (A22 −
B22N2V ) + Q22 + V T N2R22N2V ), the modified Riccati
recursion (13) converges to a unique fixed point Y∞ for
any Y0 ≥ 0.

Given that Pt and Yt converge to P∞ and Y∞ as t →
∞, the limit of optimal finite horizon costs divided by
the time horizon by taking T → ∞ is

lim
T→∞

1

T + 1
JT (µ) = trace

([

P 11
∞ P 12

∞

P 21
∞ Y∞

]

Σv

)

.

Furthermore, (25) (26) (27) (28) (29) (30) converge to
(15) (16) (17) (18) (19) (20) by continuity. Therefore,
the coefficients of (31) converge as follows:

u1
t = −K11

∞x1
t −

t−1
∑

i=0

(K12
∞ (AK

∞)t−i−1BK
∞)x1

i , (32)

where t− i−1 here is the power of AK
∞. Similarly for the

coefficients of u2
t .

In other words, we form a set of decentralized infinite
horizon policies as stated in Theorem 8. This set will be
our choice for ŵ in Corollary 10. Up to this point, we do
not know if this controller is feasible and optimal.

7 Decentralized Controller Synthesis

We first examine the closed-loop system with infinite
horizon policy as stated in Theorem 8. The closed-loop
system is given by (8) and (9). Note that, since E(x0) = 0
and ξ0 = 0, we have Ext = 0 and Eξt = 0. We also have

cov

([

xt+1

ξt+1

])

= EN

{

Acl cov

([

xt

ξt

])

AT
cl

}

+

[

Σv 0
0 0

]

.

The following Lemma gives a sufficient condition when
the sequence of covariance matrices is bounded.

Lemma 14. Define the linear map L(S) = EN (FT SF )
where F = A − BNK. Let the sequence {S0, S1, . . .}
follow the recursion St+1 = L(St) + Z with S0 ≥ 0 and
Z ≥ 0. Suppose there exists S̄ > 0 such that S̄ > L(S̄),
then the sequence St is bounded above.

Proof. See [3] for proof of a similar result.

Proof. (Theorem 7) The result is evident by applying
Lemma 14 to the covariance matrix recursion above, with
proper modifications on A, B, N , K, and Z in Lemma 14
according to (9).

We now show that the third assumption in Corollary
10 is true for our particular problem.

Lemma 15. Consider any feasible infinite horizon policy
µ, we have

lim
T→∞

1

T + 1
JT (QT µ) = J∞(µ),

where QT µ = (µ0, . . . , µT−1).

Proof. We first consider the centralized case.

J∞(µ) =

(

lim
T→∞

1

T + 1
JT

)

(µ)

= lim
T→∞

1

T + 1
E

{

T−1
∑

t=0

(

xT
t Qxt + uT

t NtRNtut

)

+xT
T QT xT

∣

∣

∣

∣

(1), ut = µt(It),∀ t ∈ Z+

}

= lim
T→∞

1

T + 1
E

{

T−1
∑

t=0

(

xT
t Qxt + uT

t NtRNtut

)

+xT
T QT xT

∣

∣

∣

∣

(1), ut = µt(It),∀ t ∈ {0, . . . , T − 1}

}

= lim
T→∞

1

T + 1
JT (QT µ).

5



Similarly for the decentralized case when u1
t = µ1

t (I
1
t )

and u2
t = µ2

t (I
2
t ).

Lemma 16. Let µ be the limit of the sequence of the
set of optimal finite horizon policies defined in Section 6.
Consider the finite horizon decentralized problems as in
Problem 2. Instead of applying the optimal actions de-
fined in Theorem 11, we apply the actions defined in
Theorem 8, by using only the first T policies of µ when
the time horizon is T + 1. Then the corresponding cost
JT (QT µ) =

T trace

([

P 11
∞ P 12

∞

P 21
∞ Y∞

]

Σv

)

+ trace

([

P 11
∞ P 12

∞

P 21
∞ Y∞

]

Σs

)

+ E

(

[

xT

x2
T − ξT

]T [

QT − P∞ 0
0 P 22

T − Y∞

] [

xT

x2
T − ξT

]

)

.

Proof. See [1] for a similar proof. Instead of letting
PT = QT , YT = P 22

T , and rT = 0, we let PT = P∞,
YT = Y∞, and rT =

E

(

[

xT

x2
T − ξT

]T [

QT − P∞ 0
0 P 22

T − Y∞

] [

xT

x2
T − ξT

]

)

.

We are now ready to show that the second assumption
in Corollary 10 is true. According to Lemma 14, if there
exists Σ > 0 such that

Σ > ENt

{

AclΣAT
cl

}

+

[

Σv 0
0 0

]

,

we must have cov

([

xt

ξt

])

upper bounded, so are cov(xt)

and cov(x2
t − ξt). Consequently,

rT = trace((QT − P∞) cov(xT ))

+ trace((P 22
T − Y∞) cov(x2

T − ξT ))

is bounded, and we have

lim
T→∞

1

T + 1
JT (QT µ) = trace

([

P 11
∞ P 12

∞

P 21
∞ Y∞

]

Σv

)

.

By the third assumption in Corollary 10, we must have

J∞(µ) = trace

([

P 11
∞ P 12

∞

P 21
∞ Y∞

]

Σv

)

,

which coincides with the limit of optimal finite horizon
costs divided by the time horizon by taking T → ∞,
thereby meeting the second assumption of Corollary 10.

We are now ready to prove the main Theorem 8.

Proof. (Theorem 8) Given the conditions in the state-
ment of Theorem 8, we must have Pt and Yt converge to
P∞ and Y∞, respectively. Then Kt and Jt, which depend
on t through Pt+1 and Yt+1, become time-invariant as in
(15) and (16). Replacing Kt and Jt in (27), (28), (29),
and (30), we have (17), (18), (19), and (20), respectively.
The optimal cost converges to (21) evidently. Since all
assumptions of Corollary 10 are true, this policy does
minimize the infinite horizon cost (6).

8 Conclusion

In this paper, we have extended the boundaries of two-
player decentralized LQG control over TCP erasure net-
work to infinite horizon cases. Unlike the classical ap-
proaches which use spectral factorization, we derived an
infinite horizon synthesis by showing that the sequence
of finite horizon optimal controllers converges to an op-
timal infinite horizon synthesis under three assumptions
set out in Corollary 10. To meet these assumptions, we
derived a sufficient condition with two inequalities for two
MAREs to converge in Theorem 6. Under this sufficient
condition on convergence, along with a sufficient condi-
tion on stability as in Theorem 7, an optimal two-player
synthesis was provided in Theorem 8.
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