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Efficient EM Training of Gaussian Mixtures with
Missing Data

Olivier Delalleau, Aaron Courville, and Yoshua Bengio

Abstract—In data-mining applications, we are frequently faced
with a large fraction of missing entries in the data matrix,
which is problematic for most discriminant machine learning
algorithms. A solution that we explore in this paper is the use
of a generative model (a mixture of Gaussians) to compute
the conditional expectation of the missing variables given the
observed variables. Since training a Gaussian mixture with many
different patterns of missing values can be computationally very
expensive, we introduce a spanning-tree based algorithm that
significantly speeds up training in these conditions. We also
observe that good results can be obtained by using the generative
model to fill-in the missing values for a separate discriminant
learning algorithm.

Index Terms—Gaussian mixtures, missing data, EM algorithm,
imputation.

I. INTRODUCTION

THE presence of missing values in a dataset often makes
it difficult to apply a large class of machine learning al-

gorithms. In many real-world data-mining problems, databases
may contain missing values due directly to the way the data
is obtained (e.g. survey or climate data), or also frequently
because the gathering process changes over time (e.g. addition
of new variables or merging with other databases). One of the
simplest ways to deal with missing data is to discard samples
and/or variables that contain missing values. However, such a
technique is not suited to datasets with many missing values;
these are the focus of this paper.

Here, we propose to use a generative model (a mixture
of Gaussians with full covariances) to learn the underlying
data distribution and replace missing values by their condi-
tional expectation given the observed variables. A mixture of
Gaussians is particularly well suited to generic data-mining
problems because:
• By varying the number of mixture components, one can

combine the advantages of simple multivariate parametric
models (e.g. a single Gaussian), that usually provide
good generalization and stability properties, to those of
non-parametric density estimators (e.g. Parzen windows,
that puts one Gaussian per training sample [1]), that
avoid making strong assumptions on the underlying data
distribution.

• The Expectation-Maximization (EM) training algo-
rithm [2] naturally handles missing values and provides
the missing values imputation mechanism. One should
keep in mind that the EM algorithm assumes the missing
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data are “Missing At Random” (MAR), i.e. that the
probability of variables to be missing does not depend on
the actual value of missing variables. Even though this
assumption will not always hold in practical applications
like those mentioned above, we note that applying the EM
algorithm might still yield sensible results in the absence
of theoretical justifications.

• Training a mixture of Gaussians scales only linearly with
the number of samples, which is attractive for large
datasets (at least in low dimension, and we will see in this
paper how large-dimensional problems can be tackled).

• Computations with Gaussians often lead to analytical
solutions that avoid the use of approximate or sampling
methods.

• When confronted with the supervised problem of learning
a function y = f(x), a mixture of Gaussians trained
to learn a joint density p(x, y) directly provides a least-
square estimate of f(x) by ŷ = E[Y |x].

Even though such mixtures of Gaussians can indeed be
applied directly to supervised problems [3], we will see in
experiments that using them for missing value imputation
before applying a discriminant learning algorithm yields better
results. This observation is in line with the common belief
that generative models that are trained to learn the global
data distribution are not directly competitive with discriminant
algorithms for prediction tasks [4]. However, they can provide
useful information regarding the data that will help such
discriminant algorithms to reach better accuracy.

The contributions in this paper are two-fold:

1) We explain why the basic EM training algorithm is
not practical in large-dimensional applications in the
presence of missing values, and we propose a novel
training algorithm that significantly speeds it up.

2) We show, both by visual inspection on image data and
by for imputed values for classification, how a mixture
of Gaussians can model the data distribution so as to
provide a valuable tool for missing values imputation.

Note that an extensive study of Gaussian mixture training and
missing value imputation algorithms is out of the scope of
this paper. Various variants of EM have been proposed in the
past (e.g. [5]), while we focus here on the “original” EM,
showing how it can be solved exactly at a significantly lower
computational cost. For missing value imputation, statisticians
may prefer to draw from the conditional distribution instead of
inputing its mean, as the former better preserves data covari-
ance [6]. In machine learning, the fact that a value is missing
may also be by itself a useful piece of information worth taking
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into account (for instance by adding extra binary inputs to the
model, indicating whether each value was observed). All these
are important considerations that one should keep in mind, but
they will not be addressed here.

II. EM FOR GAUSSIAN MIXTURES WITH MISSING DATA

In this section, we present the EM algorithm for learning
a mixture of Gaussians on a dataset with missing values. The
notations we use are as follows. The training set is denoted
by D = {x1, . . . , xn}. Each sample xi ∈ Rd may have
different missing variables. A missing pattern is a maximal
set of variables that are simultaneously missing in at least one
training sample. When the input dimension d is high, there
may be many different missing patterns, possibly on the same
order as the number of samples n (since the number of possible
missing patterns is 2d). For a sample xi, we denote by xio
and xim the vectors corresponding to respectively the observed
and missing variables in xi. Similarly, given xi, a symmetric
(d × d) matrix M can be split into four parts corresponding
to the observed and missing variables in xi, as follows:
• Moo contains elements Mkl where variables k and l are

observed in xi,
• Mmm contains elements Mkl where both variables k and
l are missing in xi,

• Mom = MT
mo contains elements Mkl where variable k is

observed in xi, while variable l is missing.
It is important to keep in mind that with these notations, we
have for instance M−1

mm
def
= (Mmm)−1 6= (M−1)mm, i.e. the

inverse of a sub-matrix is not the sub-matrix of the inverse.
Also, although to keep notations simple we always write
for instance Moo, the observed part depends on the sample
currently being considered: for two different samples, the Moo

matrix may represent a different sub-part of M . It should be
clear from the context which sample is being considered.

The EM algorithm [2] can be directly applied in the
presence of missing values [7]. As shown in [3], for a mixture
of Gaussians the computations for the two steps (Expectation
and Maximization) of the algorithm are1:

a) Expectation: compute pij , the probability that Gaus-
sian j generated sample xi. For the sake of clarity in notations,
let us denote µ = µ

(t)
j and Σ = Σ

(t)
j the estimated mean and

covariance of Gaussian j at iteration t of the algorithm. To
obtain pij for a given sample xi and Gaussian j, we first
compute the density

qij = N (xio;µo,Σoo) (1)

where N (·;µo,Σoo) is the Gaussian distribution of mean µo
and covariance Σoo:

N (z;µo,Σoo) =
1√

2π|Σoo|d
e(− 1

2 (z−µo)T Σ−1
oo (z−µo)). (2)

pij is now simply given by

pij =
qij∑L
`=1 qi`

where L is the total number of Gaussians in the mixture.
1Although these equations assume constant (and equal) mixing weights,

they can trivially be extended to optimize those weights as well.

b) Maximization: first fill-in missing values, i.e. define,
for each Gaussian j, x̂i,j by x̂i,jo = xio and x̂i,jm being equal to
the expectation of the missing values xim given the observed
xio, assuming Gaussian j has generated xi. Denoting again
µ = µ

(t)
j and Σ = Σ

(t)
j , this expectation is equal to

x̂i,jm = µm + ΣmoΣ
−1
oo (xio − µo). (3)

From these x̂i,j , the Maximization step of EM yields the new
estimates for the mean and covariances of the Gaussians:

µ
(t+1)
j =

∑n
i=1 pij x̂

i,j∑n
i=1 pij

Σ
(t+1)
j =

∑n
i=1 pij(x̂

i,j − µ(t+1)
j )(x̂i,j − µ(t+1)

j )T∑n
i=1 pij

+ C
(t)
j .

The additional term C
(t)
j results from the imputation of miss-

ing values by their conditional expectation, and is computed
as follows (for the sake of clarity, we denote C(t)

j by C and
Σ

(t)
j by Σ):
1) C ← 0
2) for each xi with observed and missing parts xio, x

i
m:

Cmm ← Cmm +
pij∑n
k=1 pkj

Σmm − ΣmoΣ
−1
oo Σom (4)

The term being added for each sample corresponds to the
covariance of the missing values xim.

Regularization can be added into this framework for in-
stance by adding a small value to the diagonal of the co-
variance matrix Σ

(t)
j , or by keeping only the first k principal

components of this covariance matrix (filling the rest of the
data space with a constant regularization coefficient).

III. SCALING EM TO LARGE DATASETS

While the EM algorithm naturally extends to problems with
missing values, doing so comes with a high computational
cost. As we will show, the computational burden may be
mitigated somewhat by exploiting the similarity between the
covariance matrices between “nearby” patterns of missing
values. Before we delve into the details of our algorithm, let
us first analyze the computational costs of the EM algorithm
presented above, for each individual training sample xi:
• The evaluation of qij from eq. 1 and 2 requires the

inversion of Σoo, which costs O(n3
o) operations, where

no is the number of observed variables in xi.
• The contribution to C

(t)
j for each Gaussian j (eq. 4)

can be done in O(n2
onm + non

2
m) (computation of

ΣmoΣ
−1
oo Σom), or in O(n3

m) if Σ−1 is available, because:

Σmm − ΣmoΣ
−1
oo Σom = (Σ−1)−1

mm. (5)

Note that for two examples xi and xk with exactly the same
pattern of missing variables, the two expensive operations
above need only be performed once, as they are the same
for both xi and xk. But in high-dimensional datasets without
a clear structure in the missing values, most missing patterns
are not shared by many samples. For instance, in a real-world
financial dataset we have been working on, the number of
missing patterns is about half the total number of samples.
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Since each iteration of EM has a cost of O(pLd3), with p
unique missing patterns, L components in the mixture, and
input dimension d, the EM algorithm as presented in section II
is not computationally feasible for large high-dimensional
datasets. The “fast” EM variant proposed in [5] also suffers
from the same bottlenecks, i.e. it is fast only when there are
few unique missing patterns.

While the large numbers of unique patterns of missing
values typically found in real-world datasets present a barrier
to the application of EM to these problems, they also motivate
a means of reducing the computational cost. As discussed
above, for high-dimensional datasets, the computational cost
is dominated by the determination of the inverse covariance of
the observed variables Σ−1

oo and of the conditional covariance
of the missing data given the observed data (eq. 5). However,
as we will show, these quantities corresponding to one pattern
of the missing values may be determined from those of
another pattern of missing values at a cost proportional to the
distance between the two missing value patterns (measured as
the number of missing and observed variables on which the
patterns differ). Thus, for “nearby” patterns of missing values,
these covariance computations may be efficiently computed
by chaining their computation through the set of patterns of
missing values. Furthermore, since the cost of these updates
will be smaller when the missing patterns of two consecutive
samples are close to each other, we want to optimize the
samples ordering so as to minimize this cost.

We present the details of the proposed algorithms in the
following sections. First, we observe in section III-A how
we can avoid computing Σ−1

oo by using the Cholesky de-
composition of Σoo. Then we show in section III-B how the
so-called inverse variance lemma can be used to update the
conditional covariance matrix (eq. 5) for a missing pattern
given the one computed for another missing pattern. As
presented in section III-C, these two ideas combined give
rise to an objective function with which one can determine
an optimal ordering of the missing patterns, minimizing the
overall computational cost. The resulting fast EM algorithm is
summarized in section III-D.

A. Cholesky Updates

Computing qij by eq. 1 can be done directly from the
inverse covariance matrix Σ−1

oo as in eq. 2, but, as argued
in [8], it is just as fast, and numerically more stable, to use the
Cholesky decomposition of Σoo. Writing Σoo = LLT with L
a lower triangular matrix with positive diagonal elements, we
indeed have

zTΣ−1
oo z = ‖L−1z‖2

where L−1z can easily be obtained since L is lower triangular.
Assuming L is computed once for the missing pattern of the
first sample in the training set, the question is thus how to
update this matrix for the next missing pattern. This reduces
to finding how to update L when adding or removing rows and
columns to Σoo (adding a row and column when a variable that
was missing is now observed in the next sample, and removing
a row and column when a variable that was observed is now
missing).

Algorithms to perform these updates can be found for
instance in [9]. When adding a row and column, we always
add it as the last dimension to minimize the computations.
These are on the order of O(n2

o), where no is the length and
width of Σoo. Removing a row and column is also on the order
of O(n2

o), though the exact cost depends on the position of
the row / column being removed.

Let us denote by nd the number of differences between
two consecutive missing patterns. Assuming that nd is small
compared to no, the above analysis shows that the overall
cost is on the order of O(nd n

2
o) computations. How to find an

ordering of the patterns such that nd is small will be discussed
in section III-C.

B. Inverse Variance Lemma

The second bottleneck of the EM algorithm resides in
the computation of eq. 5, corresponding to the conditional
covariance of the missing part given the observed part. Note
that we cannot rely on a Cholesky decomposition here, since
we need the full conditional covariance matrix itself. In order
to update (Σ−1)−1

mm, we will take advantage of the so-called
inverse variance lemma [10]. It states that the inverse of a
partitioned covariance matrix

Λ =

(
ΛXX ΛXY
ΛY X ΛY Y

)
(6)

can be computed by

Λ−1 =

(
Λ−1
XX +BTΛ−1

Y |XB −BTΛ−1
Y |X

−Λ−1
Y |XB Λ−1

Y |X

)
(7)

where ΛXX is the covariance of the X part, and the matrix
B and the conditional covariance ΛY |X of the Y part given
X are obtained by

B = ΛY XΛ−1
XX (8)

ΛY |X = ΛY Y − ΛY XΛ−1
XXΛXY (9)

Note that eq. 9 is similar to eq. 5, since the conditional
covariance of Y given X verifies

ΛY |X = (Λ−1)−1
Y Y (10)

where we have also partitioned the inverse covariance matrix
as

Λ−1 =

(
(Λ−1)XX (Λ−1)XY
(Λ−1)Y X (Λ−1)Y Y

)
. (11)

These equations can be used to update the conditional
covariance matrix of the missing variables given the observed
variables when going from one missing pattern to the next
one, so that it does not need to be re-computed from scratch.
Let us first consider the case of going from sample xi to xj ,
where we only add missing values (i.e. all variables that are
missing in xi are also missing in xj). We can apply the inverse
variance lemma (eq. 7) with the following quantities:
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• Λ−1 is the conditional covariance2 of the missing vari-
ables in xj given the observed variables, i.e. (Σ−1)−1

mm

in eq. 5, the quantity we want to compute,
• X are the missing variables in sample xi,
• Y are the missing variables in sample xj that were not

missing in xi,
• Λ−1

XX is the conditional covariance of the missing vari-
ables in xi given the observed variables, that would have
been computed previously,

• since Λ = (Σ−1)mm, then ΛY X and ΛY Y are simply
sub-matrices of the global inverse covariance matrix, that
only needs to be computed once (per iteration of EM).

Let us denote by nd the number of missing values added
when going from xi to xj , and by nm the number of missing
values in xi. Assuming nd is small compared to nm, then the
computational cost of eq. 7 is dominated by the cost O(nd n

2
m)

for the computation of B by eq. 8 and of the upper-left term
in eq. 7 (the inversion of ΛY |X is only in O(n3

d)).
In the case where we remove missing values instead of

adding some, this corresponds to computing Λ−1
XX from Λ−1

using eq. 7. This can be done from the partition of Λ−1 since,
by identifying eq. 7 and 11, we have:

(Λ−1)XX − (Λ−1)XY (Λ−1)−1
Y Y (Λ−1)Y X

= Λ−1
XX +BTΛ−1

Y |XB −B
TΛ−1

Y |X(Λ−1)−1
Y Y Λ−1

Y |XB

= Λ−1
XX

where we have used eq. 10 to obtain the final result. Once
again the cost of this computation is dominated by a term of
the form O(nd n

2
m), where this time nd denotes the number

of missing values that are removed when going from xi to xj

and nm the number of missing values in xj .
Thus, in the general case where we both remove and add

missing values, the cost of the update is on the order of
O(nd n

2
m), if we denote by nd the total number of differences

in the missing patterns, and by nm the average number of
missing values in xi and xj (which are assumed to be close,
since nd is supposed to be small). The speed-up is on the
order of O(nm/nd) compared to the “naive” algorithm that
would re-compute the conditional covariance matrix for each
missing pattern.

C. Optimal Ordering From the Minimum Spanning Tree

Given an ordering {m1,m2, . . . ,mp} of the p missing
patterns present in the training set, during an iteration of the
EM algorithm we have to:

1) Compute the Cholesky decomposition of Σoo and the
conditional covariance (Σ−1)−1

mm for the first missing
pattern m1.

2) For each subsequent missing pattern mi, find the missing
pattern in {m1,m2, . . . ,mi−1} that allows the fastest
computation of the same matrices, from the update
methods presented in sections III-A and III-B.

2Note that in the original formulation of the inverse variance lemma Λ
is a covariance matrix, while we use it here as an inverse covariance: since
the inverse of a symmetric positive definite matrix is also symmetric positive
definite, it is possible to apply eq. 7 to an inverse covariance.

Since each missing pattern but the first one has a “parent”
(the missing pattern from which we update the desired matri-
ces), we visit the missing patterns in a tree-like fashion: the
optimal tree is thus the minimum spanning tree of the fully-
connected graph whose nodes are the missing patterns and
the weight between nodes mi and mj is the cost of computing
matrices for mj given matrices for mi. Note that the spanning
tree obtained this way is the exact optimal solution and not
an approximation (assuming we constrain ourselves to visiting
only observed missing patterns and we can compute the true
cost of updating matrices).

For the sake of simplicity, we used the number of differ-
ences nd between missing pattterns mi and mj as the weights
between two nodes. Finding the “true” cost is difficult because
(1) it is implementation-dependent and (2) it depends on the
ordering of the columns for the Cholesky updates, and this
ordering varies depending on previous updates due to the fact
it is more efficient to add new dimensions as the last ones, as
argued in section III-A. We tried more sophisticated variants
of the cost function, but they did not decrease significantly the
overall computation time.

Note it would be possible to allow the creation of “virtual”
missing patterns, whose corresponding matrices could be used
by multiple observed missing patterns in order to speed-up
updates even further. Finding the optimal tree in this setting
corresponds to finding the optimal Steiner tree [11], which is
known to be NP-hard. Since we do not expect the available
approximate solution schemes to provide a huge speed-up, we
did not explore this approach further.

Finally, one may have concerns about the numerical sta-
bility of this approach, since computations are incremental
and thus numerical errors will be accumulated. The number
of incremental steps is directly linked to the depth of the
minimum spanning tree, which will often be logarithmic in
the number of training samples, but may grow linearly in the
worst case. Although we did not face this problem in our
own experiments (where the accumulation of errors never led
to results significantly different from the exact solution), the
following heuristics can be used to solve it: the matrices of
interest can be re-computed “from scratch” at each node of the
tree whose depth is a multiple of k, with k a hyper-parameter
trading accuracy for speed.

D. Fast EM Algorithm Overview
We summarize here the previous sections by giving a sketch

of the resulting fast EM algorithm for Gaussian mixtures:
1) Find all unique missing patterns in the dataset.
2) Compute the minimum spanning tree3 of the correspond-

ing graph of missing patterns (see section III-C).
3) Deduce from the minimum spanning tree on missing

patterns an ordering of the training samples (since each
missing pattern may be common to many samples).

4) Initialize the means of the mixture components by the
K-means clustering algorithm, and their covariances

3Since the cost of this computation is in O(p2), with p the number of
missing patterns, if p is too large it is possible to perform an initial basic
clustering of the missing patterns and compute the minimum spanning tree
independently in each cluster.
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from the empirical covariances in each cluster (either
imputing missing values with the cluster means or just
ignoring them, which is what we did in our experi-
ments).

5) Iterate through EM steps (as described in section II)
until convergence (or until a validation error increases).
At each step, the expensive matrix computations high-
lighted in section III are sped-up by using iterative
updates, following the ordering obtained in step 3.

IV. EXPERIMENTS

A. Learning to Model Images

To assess the speed improvement of our proposed algo-
rithm over the “naive” EM algorithm, we trained mixtures
of Gaussians on the MNIST dataset of handwritten digits. For
each class of digits (from 0 to 9), we optimized an individual
mixture of Gaussians in order to model the class distribution.
We manually added missing values by removing the pixel
information in each image from a randomly chosen square of
5x5 pixels (the images are 28x28 pixels, i.e. in dimension 784).
The mixtures were first trained efficiently on the first 4500
samples of each class, while the rest of the samples were used
to select the hyperparameters, namely the number of Gaussians
(from 1 to 10), the fraction of principal components kept (75%,
90% or 100%), and the random number generator seed used
in the mean initialization (chosen between 5 different values).
The best model was chosen based on the average negative log-
likelihood. It was then re-trained using the “naive” version of
the EM algorithm, in order to compare execution time and
also ensure the same results were obtained.

On average, the speed-up on our cluster computers (32 bit
P4 3.2 Ghz with 2 Gb of memory) was on the order of 8.
We also observed a larger improvement (on the order of 20)
on another architecture (64 bit Athlon 2.2 Ghz with 2 Gb of
memory): the difference seemed to be due to implementations
of the BLAS and LAPACK linear algebra libraries.

Fig. 1. Imputation of missing pixels in images. On the left, images with
missing pixels (represented by a grey square). On the right, the same images
with the missing pixels imputed by a mixture of Gaussians.

We display in figure 1 the imputation of missing values
realized by the trained mixture when provided with sample test
images. On each row, images with grey squares have missing
values (identified by these squares), while images next to them

show the result of the missing value imputation. Although the
imputed pixels are a bit fuzzy, the figure shows the mixture
was able to capture meaningful correlations between pixels,
and to impute sensible missing values.

B. Combining Generative and Discriminative Models
The Abalone dataset from the UCI Machine Learning

Repository is a standard benchmark regression task. The
official training set (3133 samples) is divided into a training
(2000) and validation set (1133), while we use the official
test set (1044). This dataset does not contain any missing
data, which allows us to see how the algorithms behave as
we add more missing values. We systematically preprocess
the dataset after inserting missing values, by normalizing all
variables (including the target) so that the mean and standard
deviation on the training set are respectively 0 and 1 (note that
we do not introduce missing values in the target, so that mean
squared errors can be compared).

We compare three different missing values imputation
mechanisms:

1) Imputation by the conditional expectation of the missing
values as computed by a mixture of Gaussians learnt
on the joint distribution of the input and target (the
algorithm proposed in this paper)

2) Imputation by the global empirical mean (on the training
set)

3) Imputation by the value found in the nearest neigh-
bor that has a non missing value for this variable
(or, alternatively, by the mean of the 10 such nearest
neighbors). Because there is no obvious way to compute
the nearest neighbors in the presence of missing values
(see e.g. [12]), we allow this algorithm to compute the
neighborhoods based on the original dataset with no
missing value: it is thus expected to give the optimal
performance that one could obtain with such a nearest-
neighbor algorithm.

One one hand, we report the performance of the mixture
of Gaussian used directly as a predictor for regression. On
another hand, the imputed values are also fed to the two
following discriminant algorithms, whose hyper-parameters
are optimized on the validation set:

1) A one-hidden-layer feedforward neural network trained
by stochastic gradient descent, with hyper-parameters
the number of hidden units (among 5, 10, 15, 20, 30,
50, 100, 200), the quadratic weight decay (among 0,
10−6, 10−4, 10−2), the initial learning rate (among
10−2, 10−3, 10−4) and its decrease constant4 (among
0, 10−2, 10−4, 10−6).

2) A kernel ridge regressor, with hyper-parameters the
weight decay (in 10−8, 10−6, 10−4, 10−2, 1) and the
kernel: either the linear kernel, the Gaussian kernel (with
bandwidth in 100, 50, 10, 5, 1, 0.5, 0.1, 0.05, 0.01) or
the polynomial kernel (with degree in 1, 2, 3, 4, 5 and
dot product scaling coefficient in 0.01, 0.05, 0.1, 0.5, 1,
5, 10).

4The learning rate after seeing t samples is equal to µ(t) =
µ(0)
1+λt

, where
µ(0) is the initial learning rate and λ the decrease constant.
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Fig. 2. Test mean-squared error (y axis) on Abalone when the proportion
of missing values increases (x axis). The three missing values imputation
mechanisms are compared when using a neural network (top), and kernel
ridge regression (bottom).

Figure 2 compares the three missing values imputation
mechanisms when using a neural network and kernel ridge
regression. It can be seen that the conditional mean imputation
obtained by the Gaussian mixture significantly outperforms
the global mean imputation and nearest neighbor imputation
(which is tried with both 1 and 10 neighbors, keeping the best
on the validation set). The latter seems to be reliable only when
there are few missing values in the dataset: this is expected,
as when the number of missing values increases one has to
go further in space to find neighbors that contain non-missing
values for the desired variables.

Figure 3 illustrates the gain of combining the generative
model (the mixture of Gaussian) with the discriminant learning
algorithms: even though the mixture can be used directly
as a regressor (as argued in the introduction), its prediction
accuracy can be greatly improved by a supervised learning
step.

V. CONCLUSION

In this paper, we considered the problem of training Gaus-
sian mixtures in the context of large high-dimensional datasets
with a significant fraction of the data matrix missing. In such
situations, the application of EM to the imputation of missing
values results in expensive matrix computations. We have
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Fig. 3. Test mean-squared error (y axis) on Abalone when the proportion
of missing values increases (x axis). Combining a discriminant algorithm
with the generative Gaussian mixture model works better than the Gaussian
mixture alone (both the neural network and the kernel ridge regressor use here
the conditional mean imputation of missing values provided by the Gaussian
mixture).

proposed a more efficient algorithm that uses matrix updates
over a minimum spanning tree of missing patterns to speed-up
these matrix computations, by an order of magnitude.

We also explored the application of a hybrid scheme where
a mixture of Gaussians generative model, trained with EM,
is used to impute the missing values with their conditional
means. These imputed datasets were then used in a dis-
criminant learning model (neural networks and kernel ridge
regression) where they were shown to provide significant im-
provement over more basic missing value imputation methods.

REFERENCES

[1] E. Parzen, “On the estimation of a probability density function and
mode,” Annals of Mathematical Statistics, vol. 33, pp. 1064–1076, 1962.

[2] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum-likelihood
from incomplete data via the EM algorithm,” Journal of Royal Statistical
Society B, vol. 39, pp. 1–38, 1977.

[3] Z. Ghahramani and M. I. Jordan, “Supervised learning from incomplete
data via an EM approach,” in Advances in Neural Information Process-
ing Systems 6 (NIPS’93), D. Cowan, G. Tesauro, and J. Alspector, Eds.
San Mateo, CA: Morgan Kaufmann, 1994.

[4] L. Bahl, P. Brown, P. deSouza, and R. Mercer, “Maximum mutual infor-
mation estimation of hidden markov parameters for speech recognition,”
in International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Tokyo, Japan, 1986, pp. 49–52.

[5] T. I. Lin, J. C. Lee, and H. J. Ho, “On fast supervised learning for
normal mixture models with missing information,” Pattern Recognition,
vol. 39, no. 6, pp. 1177–1187, Jun. 2006.

[6] M. D. Zio, U. Guarnera, and O. Luzi, “Imputation through finite
Gaussian mixture models,” Computational Statistics & Data Analysis,
vol. 51, no. 11, pp. 5305–5316, 2007.

[7] R. J. A. Little and D. B. Rubin, Statistical Analysis with Missing Data,
2nd ed. New York: Wiley, 2002.

[8] M. Seeger, “Low rank updates for the Cholesky decomposition,” De-
partment of EECS, University of California at Berkeley, Tech. Rep.,
2005.

[9] G. W. Stewart, Matrix Algorithms, Volume I: Basic Decompositions.
Philadelphia: SIAM, 1998.

[10] J. Whittaker, Graphical Models in Applied Multivariate Statistics. Wi-
ley, Chichester, 1990.

[11] F. K. Hwang, D. Richards, and P. Winter, “The Steiner tree problem,”
Annals of Discrete Mathematics, vol. 53, 1992.

[12] R. Caruana, “A non-parametric EM-style algorithm for imputing missing
values,” in Proceedings of the Eigth International Workshop on Artifi-
cial Intelligence and Statistics (AISTATS’01). Society for Artificial
Intelligence and Statistics, 2001.


	I Introduction
	II EM for Gaussian Mixtures with Missing Data
	III Scaling EM to Large Datasets
	III-A Cholesky Updates
	III-B Inverse Variance Lemma
	III-C Optimal Ordering From the Minimum Spanning Tree
	III-D Fast EM Algorithm Overview

	IV Experiments
	IV-A Learning to Model Images
	IV-B Combining Generative and Discriminative Models

	V Conclusion
	References

