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A new algorithm, Laplacian MinMax Discriminant Projection (LMMDP), is proposed in this paper
for supervised dimensionality reduction. LMMDP aims at learning a discriminant linear
transformation. Specifically, we define the within-class scatter and the between-class scatter using
similarities which are based on pairwise distances in sample space. After the transformation, the
considered pairwise samples within the same class are as close as possible, while those between
classes are as far as possible. The structural information of classes is contained in the within-class
and the between-class Laplacian matrices. Therefore, the discriminant projection subspace can be
derived by controlling the structural evolution of Laplacian matrices. The performance on several
data sets demonstrates the competence of the proposed algorithm.
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1. INTRODUCTION
Dimensionality reduction has attracted tremendous attention in the pattern recognition community
over the past few decades and many new algorithms have been developed. Among these algorithms,
linear dimensionality reduction is widely spread for its simplicity and effectiveness. Principal
component analysis (PCA), as a classic linear method for unsupervised dimensionality reduction,
aims at learning a kind of subspaces where the maximum covariance of all training samples are
preserved (Turk,1991). Locality Preserving Projections, as another typical approach for
unsupervised dimensionality reduction, seeks projections to preserve the local structure of the
sample space (He, 2005). However, unsupervised learning algorithms cannot properly model the
underlying structures and characteristics of different classes (Zhao, 2007). Discriminant features are
often obtained by supervised dimensionality reduction. Linear discriminant analysis (LDA) is one
of the most popular supervised techniques for classification (Fukunaga, 1990; Belhumeur, 1997).
LDA aims at learning discriminant subspace where the within-class scatter is minimized and the
between-class scatter of samples is maximized at the same time. Many improved LDAs up to date
have demonstrated competitive performance in object classification (Howland, 2004; Liu, 2007;
Martinez, 2006; Wang and Tang, 2004a; Yang, 2005).

JRPIT 42.1.QXP:Layout 1  12/03/10  2:11 PM  Page 3



Laplacian MinMax Discriminant Projection and its Applications

Journal of Research and Practice in Information Technology, Vol. 42, No. 1, February 20104

As stated in Zhao (2007), the primary formulation of LDA does not always hold in non-Euclidean
Spaces. In this paper, we propose a new supervised dimensionality reduction algorithm, Laplacian
MinMax Discriminant Projection (LMMDP), for discriminant feature extraction. The spirit of
LMMDP is largely motivated by the traditional LDA, Laplacian Eigenmaps (LE) and the nearest
neighbourhood selection strategy (Weinberger, 2006; Nie, 2007). In our algorithm, we only focus on
the farthest neighbourhood within the same class and nearest neighbourhood between different
classes at the same time. We formulate the within-class scatter and the between-class scatter by
means of similarity criterions which were commonly used in LE and LPP (Locality Preserving
Projection). The extended within-class scatter and the between-class scatter are governed by the
within-class Laplacian matrix and the between class Laplacian matrix. Generally, LDA can be
regarded as a special case of LMMDP. Therefore, LMMDP not only conquers the non-Euclidean
space problem but also provides an alternative way to find potential better discriminant subspaces.

The paper is organized as follows. In Section 2, we provide a brief introduction of the related
work. In Section 3, the proposed Laplacian MinMax Discriminant Projection is described in detail.
The experimental results and the performance comparisons are presented in Section 4. Section 5
covers some conclusions.

2. OVERVIEW OF LINEAR DISCRIMINANT ANALYSIS
Let denote a data set matrix which consists of n samples 
Linear dimen sionality reduction algorithms focus on constructing a small number, d, of features by
applying a linear transformation that maps each sample data xi of X to the corre -
sponding vector in d-dimensional space as follows: 

(1)

Assume that the matrix X contains c classes, and is ordered such that samples appear by class

(2)

In traditional LDA, two scatter matrices, i.e., within-class matrix and between-class matrix are
defined as follows (Fukunaga, 1990):

(3)

(4)

where ni is the number of samples in the i–th class Xi, m
–

i is the mean vector of the i–th class, and m–

is the mean vector of total samples. It follows from the definition that trace(Sw) measures the
within-class compactness, and trace(Sb) measures the between-class separation.

The optimal transformation matrix W obtained by traditional LDA is computed as follows
(Fukunaga, 1990):

(5)

To solve the above optimization problem, the traditional LDA computes the following
generalized eigenvalue equation
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(6)

and takes the d eigenvectors that are associated with the d largest eigenvalues 

3. LAPLACIAN MINMAX DISCRIMINANT PROJECTIONS
Let xs

i denote the i–th sample in s–th class. We formulate Equation 1 as follows:

(7)

Assume that each xs
i have two kinds of neighbourhoods: within-class neighbourhood nfw and

between-class neighbourhood nnb. nfw implies the set of kfw farthest sample points of (xs
i) in the

same class. nnb implies the set of knb nearest sample points of (xs
i) in different classes. Then we

obtain 1≤ kfw≤ ni –1,, and 1≤ knb≤ n–ni, where ni is the number of samples in class i.
After the transformation derived from LMMDP, we hope that the considered sample points will

be closer within the same class, and those between different classes will be farther as shown in
Figure 1.

3.1 Discriminant Within-Class Scatter
We define the within-class scatter of class s as as follows:

(8)

where ys
j implies its corresponding original sample xs

j belonging to nfw neighbourhood of (ys
i)’s

corresponding original sample xs
i. α

s
i is the weight, defined as 

(9)

where t is the time variable as that of in LE and LPP algorithms (Belkin, 2003; He, 2005). It suffices
to note that we adopt the distance measure (in Equation 9) by Euclidean norm for the simpli -
fication reason. In fact, the distance measure can be other norms depending on the metric of the
original sample space which may be Euclidean or non-Euclidean.

Figure 1: There are three classes A, B and C illustrated above. In class A, a2 and a3 are a1’s within-class nfw
neighbourhood. b1 and b2 are a1’s between-class nnb neighbourhood. After the transformation, we try to make a1

close to a2 and a3, while far from b1 and c1. For class B and C, the analysis is similar to that of class A.
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The above Eq.(8) can be re-formulated as follows to obtain its compact form:

where consists of nfw neighbourhood of ys
i , and ekfw

is all one column vector of length kfw.

Let, Ys = (ys
1 , ys

2,…,ys
cs

), αs = diag(αs
1,α

s
2,…,αs

cs
), then Equation 10 can be re-written as follows:

(11)

where . There exists a 0–1 indicator matrix satisfying

(12)

Substituting Equation 12 to Equation 11 gives

(13)

where

(14)

Let denote the total within-class scatter of all samples, then we obtain

(15)

There exists a 0–1 indicator matrix Ps satisfying Ys = YPs. For supervised learning, the known
class information is recorded in column vector of Ps. Substituting Equation 15 to Equation 14 gives

(16)

(10)
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where

(17)

can be viewed as the within-class Laplacian matrix.
Taking Y = WT X into account, we re-write Equation 16 as follows

(18)

where is the total within-class scatter matrix.

3.2 Discriminant Between-Class Scatter
Let Bs denote the between-class scatter of class s. Bs is defined as

(19)

where yj implies its corresponding original sample xs
j belonging to nnb neighbourhood of (ys

i)’s
corresponding original sample xs

i. α
s
i is the weight, defined as

(20)

By the similar deduction as that in Equation 10 and 11, Bs can be formulated as follows

(21)

where Ynb(ys) consists of nnb neighbourhood of each data in ys.
There exists a 0–1 indicator matrix Snb(ys)

satisfying Ynb(ys)) = YSnb(ys)
. Equation 21 can be re-

written as

(22)

where 

Let denote the total between-class scatter of all classes, then we obtain

(23)

where

(24)

can be viewed as the between-class Laplacian matrix.
Taking Y = WTX into account, we re-write Equation 23 as follows
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(25)

where is the total between-class scatter matrix.

3.3 Discriminant Projection
We construct the following Fisher criterion

(26)

To solve the above optimization problem, we take the similar approach used in the traditional
LDA. We take the d eigenvectors derived from the following generalized eigenvalue analysis

(27)

that are associated with the d largest eigenvalues λi,i = 1,…,d.
The idea of Laplacian MinMax (minimize within-class scatter and maximize between-class

scatter) discriminant projection is to make the samples within the same class cluster as compact as
possible and samples between classed separate as far as possible in Laplacian aspect. Different from
(Nie, 2007; Yan, 2005), LMMDP mainly focuses on samples far apart within the same class and
samples nearby between different classes. It is easy to understand that the overlap of different
classes is mainly due to the outlier samples in classes. Therefore, the outliers usually lead to
misclassifications. The minimization of Equation 18 means pulling the outliers in the same class
near the class centre, to some extent. When the minimization of Equation 18 is combined with the
maxim ization of Equation 23, the projections obtained by the proposed LMMDP, i.e., Equation 26,
demonstrate discriminant power. In addition, it should be noted that the distance between samples
in the original sample space are measured Euclidean norm for simplification reasons in this paper.
In fact, the distance measure can be other norms depending on the metric of the original sample
space which may be Euclidean or non-Euclidean.

4. COMPARATIVE EXPERIMENTAL RESULTS
In this section, we investigate the use of LMMDP on several data sets including UCI (Available at
http://www.ics.uci.edu/ mlearn/MLRepository.html), USPS (Available at http://www.kernel-
machines.org/data) and PIE-CMU face data set (Sim, 2002). The data sets used in the paper belong
to different fields in order to test the performance of LMMDP algorithm. We compare our proposed
algorithm with PCA (Turk, 1991), LDA (Belhumeur, 1997), LPP (He, 2005) and Marginal Fisher
Analysis (MFA) (Yan, 2005).

4.1. On UCI Sata Set
In this experiment, we perform on iris data taken from the UCI Machine Learning Repository. There
are 150 samples of 3 classes (50 samples per class) in iris data set. We randomly select 20 samples
per class for training and the remaining samples for testing. The average results are obtained over
50 random splits. All algorithms reduce the original samples to 2-dimensional space. The
classification is based on k-nearest neighbour classifier. The experimental results are shown in Table
1. In terms of LMMDP algorithm, there are several parameters which should be set before the
experiments. In the experiment, kfw = 15, knb = 20, and the time variable t = 10.
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Algorithm PCA LDA LPP MFA LMMDP

Accuracy 95.112 95.391 95.391 95.383 95.891

Table 1: Recognition accuracy of different algorithms

(a) PCA

(d) MFA (e) LMMDP

(b) LDA (c) LPP

Figure 2: Embedding results in 2-D space of PCA, LDA, LPP, MFA and LMMDP

To demonstrate the performance of LMMDP algorithm, we randomly select one split from the
50 splits. The embedding results of LMMDP in 2D space, together with the other four algorithms,
are shown in Figure 2.

As illustrated in Table 1, LMMDP algorithm outperforms other methods with a recognition rate
of 93.891%. We can find that the within-class embedding result of LMMDP is more compact than
those of the other four methods, as illustrated in Figure 2.

4.2. On USPS Data Set
In this experiment, we focus on the digit recognition task using the USPS data set. It contains
normalized grey scale images size 16×16, divided into a training set of 7,291 images and a testing
set of 2,007 images. For convenience, we randomly select 500 samples per class in the original
training set as our training set. That is to say, there are 5,000 training samples in our training set.
Our testing set is the same as the original testing set. The average results with corresponding
reduced dimensions are obtained over 50 random splits. The classification is based on k-nearest
neighbour classifier. The experimental results are shown in Table 2. In the experiment, the
parameters of LMMDP algorithm are set as kfw = 105, knb = 215, and the time variable t = 10.       

On this data set as described in Table 2, LMMDP algorithm also makes a little more improve -
ment than the others. It suffices to note that LDA fails because its available embedding number may
be insufficient under this case.
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4.3. On PIE-CMU Face Data Set
The PIE-CMU face data set consists of 68 subjects with 41,368 face images (Sim, 2002). In this
experiment, we select 40 subjects with 120 face images for each from the CMU data set, 60 images
for training, and the other 60 images for testing. Before the experiment, faces in the images are
detected by the face detection system described in Zheng (2006). The detected faces are converted
to grey scale images and resized to 32×32. Some samples are shown in Figure 3. Totally, there are
2,400 images in the training set and the testing set, respectively.

It should be mentioned that we take PCA as a preprocessing step for LMMDP. The number of
principal components is a free parameter to choose. As pointed out in Wang and Tang (2004b) and
Wang and Tang (2006), the dimension of principal subspaces significantly affects the performance
of recognition tasks. Besides, they confirmed that the optimal number lies in the interval [50,200].
Based on their work, we find the best dimension of PCA is 182. Therefore, we take 182 as the
number of principal com ponents in the following experiments.

For the sake of visualization, we illustrate algorithmic-faces derived from different algorithms,
such as Eigenfaces from PCA, Fisherfaces from LDA and Laplacianfaces from LPP, in Figure 4.
The special face-like images derived from MFA and LMMDP can be called MFAfaces and
LMMDPfaces, respectively.

Algorithm PCA LDA LPP MFA LMMDP

Accuracy 85.071 79.521 86.336 87.368 87.821

Dims 51 9 39 31 53

Table 2: Best recognition accuracy of different algorithms

Figure 3: Some samples of CMU-PIE face data set

Figure 4: From the top row to the bottom row, the face-like images are Eigenfaces, Fisherfaces, Laplacianfaces,
MFAfaces and LMMDPfaces, respectively.
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The average results with corresponding reduced dimensions are obtained over 50 random splits.
The classification is also based on k-nearest neighbour classifier. The experimental results are
shown in Table 3. In the experiment, the parameters of LMMDP algorithm are set as kfw = 23, kfw = 36,
and the time variable t = 10.

        
4.4 On Local Features
Still, we investigate the performance of the proposed LMMDP algorithm on local features. Here,
we exploit Gabor wavelets to extract local features. The 2D Gabor functions proposed by Daugman
are local spatial band-pass filters that achieve the theoretical limit for conjoint resolution of
information in the 2D spatial and 2D Fourier domains, that is, Gabor wavelets exhibit desirable
characteristics of spatial locally and orientation selectivity (Daugman, 1980). Donato et al (1999)
had shown through experiments that the Gabor wavelet representation gives better performance
than other techniques for classifying facial actions.

The Gabor wavelets (kernels, filters) can be defined as:

(28)

where α and β define the orientation and scale of the Gabor kernels, denotes the norm operator,
z = (x, y), and the wave vector kα,β is defined as:

(29)

where kβ = kmax / f β and �α = πα / 8. kmax is the maximum frequency, and f is the spacing factor
between kernels in the frequency domain.

By scaling and rotation of kα,β, all self-similar Gabor kernels in Equation 28 can be generated
from one filter, the mother wavelet. Each kernel is a product of a Gaussian envelope and a complex
plane wave. In the square brackets in Equation 28, the first term and the second term denote the
oscillatory part and the DC part of the kernel respectively. If the parameter σ has sufficiently large
value, the effect of the DC term becomes negligible. Here the parameters of α and β are set to eight
and five respectively. In this paper, we also set α and β to be eight and five. Figure 5 shows the real
part of the Gabor kernels at five scales and eight orientations and their magnitudes, with the
following parameters: α = {0,1,.,7}, β = 0,1,.,4, kmax = π / 2, f = 2, � = 2π. The Gabor kernels show
desirable performance of orientation selectivity, frequency and spatial locality.

In order to encompass all frequency and locality information as much as possible, this paper,
(same as Liu, 2001), concatenated all the Gabor representations at the five scales and eight orien -
tations. Before the concatenation, Yα,β (z) is down-sampled by a factor ρ to reduce the space dimen -
sion, and normalized to zero mean and unit variance. We then construct a vector out of the Yα,β (z)
by concatenating its rows (or columns). Now let Yρ

α,β (z) denote the normalized vector Yα,β (z)
constructed from, the augmented Gabor feature vector Yρ is defined as:

Algorithm PCA LDA LPP MFA LMMDP

Accuracy 69.786 79.510 79.533 83.328 85.480

Dims 180 39 91 58 104

Table 3: Best recognition accuracy of different algorithms
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(30)

Then Yρ, which is a row vector or column vector, serves as the original space performing different
methods for recognition.

To test the performance of the LMMDP algorithm on local features, we apply LMMDP to a face
recognition task based on PIE-CMU data set. In this experiment, the training and the testing set are
the same as mentioned in subsection 4.3. The average results with corresponding reduced
dimensions are obtained over 50 random splits. The classification is also based on k-nearest neigh -
bour classifier. The experimental results are shown in Table 4. 

        
5. CONCLUSION
In this paper, we have proposed a new method, Laplacian MinMax Discriminant Projection
(LMMDP), based on Laplacian eigenmap and LDA algorithms for supervised dimensionality
reduction. Using similarity weighted discriminant criterions, we define the within-class Laplacian
matrix and between-class Laplacian matrix. LMMDP focuses on the farthest points (nfw) within
class and nearest points (nnb) between class. nfw is minimized, meanwhile nnb is maximized. In
comparison with the traditional LDA, LMMDP focuses more on the enhancement of the
discriminability of local structures. Therefore, LMMDP has the flexibility of finding optimal
discriminant subspaces.

Experiments are performed on several real data sets. Experimental results indicate that discrim -
inant criterions formulated in LMMDP are more suitable for discriminant feature extraction, no

Figure 5: Gabor wavelets at 5 scales and 8 orientations

Algorithm PCA LDA LPP MFA LMMDP

Accuracy 70.51 85.10 83.29 86.72 87.30

Dims 95 39 111 111 87

Table 4: Best recognition accuracy of different algorithms
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matter whether the sample space is Euclidean or not. The performance of LMMDP will be further
enhanced by trying other improved LDA strategies. In addition, how to choose the best parameters
of LMMDP will be an interesting direction for future study.
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