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1. INTRODUCTION
During the last decades, the cryptographic community has paid significant attention to the usage of
elliptic curves defined over a finite field Fq in the design of several security protocols (Koblitz,
1987; Menezes, 1993; Blake et al, 1999). 

Such an increasing interest is mainly due to two aspects: on the one hand, solving the Discrete
Logarithm Problem over the group of points of an elliptic curve (ECDLP) is computationally harder
than solving it over the multiplicative group of a finite field (DLP) (indeed the Index–Calculus
method can be applied over finite fields with subexponential complexity, but cannot be imple-
mented over elliptic curves (Silverman et al, 1998)). As a consequence, the size of the group can be
significantly reduced and, hence, it permits the usage of shorter keys and parameters. This aspect is
specially relevant when being used in hardware devices, which present memory and computation
restrictions (Hankerson et al, 2003). 

* This work has been partially supported by grants MTM2004–008076, TIN2006-15662-C02-02 
and MTM2007–66842-C02-02 from Spanish MCyT.
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On the other hand, long–term–purpose cryptosystems require periodic refreshment of the setup
of the systems. In this sense, in DLP–based cryptosystems the underlying finite field must be
changed, while, in ECDLP–based cryptosystems, different curves can be chosen each time, without
necessarily changing the finite field over which the curves are defined. Again, this property turns
out to be interesting for hardware implemented algorithms, since the arithmetic of the processor can
remain unchanged. 

Nevertheless, not every elliptic curve offers the same security level, so curves should be
carefully chosen when updating the systems. Cryptographically good elliptic curves should fit
several conditions. Concerning its cardinal, it should have a prime divisor which is big enough to
prevent the Pohlig–Hellman attack (Pohlig et al, 1978). Moreover, in cryptosystems based on
intractability of ECLDP, the curve should also be non–supersingular, with trace different to one and
low embedding degree (otherwise, the ECDLP could be reduced to the DLP over the multiplicative
group of a small–degree extension of the base field) (Hankerson et al, 2003). Lately, supersingular
curves are being used in cryptographic protocols based on pairings (Bareto et al, 2000).

As a consequence, one approach to obtain good curves would be obtaining new ones from a
given good one E/Fq, while maintaining the same properties as the original curve. Even companies
offering security services may want a reasonably large amount of such curves in stock, which could
be offered to their customers when necessary. 

Finding out isomorphic curves to E/Fq would indeed provide curves with the same cardinal (and
hence, presumably the same security). But, since these curves can be considered essentially the
same curve, they do not become, in fact, a valid alternative. More generally, it is well known
(Husemöller, 1987) that two elliptic curves over Fq have the same cardinal if, and only if, they are
isogenous. That is to say, a rational map exists that preserves the infinity point. Then, the cardinal
of the kernel of such a map is called the degree of the isogeny.

Therefore, obtaining every isomorphism class of curves with the same cardinal as E(Fq) could
be done by obtaining all the rational isogenies of E/Fq, with degree under that bound. In addition,
notice that only prime degree isogenies need to be considered, since each isogeny splits in isogenies
with prime degrees bound by a given threshold (Galbraith, 1999). 

Then, given an elliptic curve and a fixed prime l, one  can  generate  successive l–isogenous
curves. The curves obtained by means of this procedure are all isogenous, and can be represented
by means of a graph structure called l–volcano (Kohel, 1996; Fouquet et al, 2002). Its nodes are
isomorphism classes of elliptic curves, and each edge represents an l–degree isogeny between
neighbour curves. But, not every curve isogenous to E/Fq will necessarily belong to that volcano
(however, it would hold for supersingular curves, but these ones are not interesting for
ECDLP–based cryptography). Then, the set of every l–volcanoes of curves with the same cardinal
is denoted as l–cordillera. 

So, this paper presents a procedure which allows us to obtain every elliptic curve with the same
cardinal than a given one, defined over the same finite field. This algorithm takes benefit of the fact
that the curves in volcanoes of a li–cordillera also appear in some other lj–cordillera. Hence, once
the curves in the li–volcano of E/Fq are obtained, new ones can come out by studying, respectively,
their lj–volcanoes (an algorithm to generate the curves of a 2–volcano is presented in Miret et al
(2006)).

The remainder of the paper is organized as follows. Section 2 consists of a brief introduction to the
computation of isogenies, as well as the construction of volcanoes and cordilleras. Section 3 presents
in detail the algorithm proposed in the paper, its behaviour is also enlightened by means of some
examples. Finally, Section 4 lays the main conclusions, as well as suggests future work in this area. 
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2.  VOLCANOES OF l–ISOGENIES OF ELLIPTIC CURVES
The main concepts related to the study of isogenies of elliptic curves are given in this section.
Likewise, the structure of a volcano of isogenies together with its features and properties (Fouquet
et al, 2002) are also introduced.

2.1 Isogenies
Given an elliptic curve E over Fq, determining an isogenous curve to E is a feasible problem, from
an algebraic point of view. Indeed, given a rational non–trivial subgroup G⊂E(Fq), for instance the
cyclic subgroup 〈P〉 generated by a point P∈E(Fq),  a rational map I can be constructed, from the
curve E and with kernel G. Then the quotient E/G is a new elliptic curve E', which is called
isogenous curve of E under isogeny I. Besides, the degree of the isogeny is defined as the cardinal
of the subgroup G. In general, given two elliptic curves, E and E', it is said that they are isogenous
curves if there exists a non–trivial rational map between them that sends the infinity point in E to
the infinity point in E'.

More concretely, given an elliptic curve of Weierstrass equation

the coefficients of its isogenous curve of kernel G

can be straightforwardly obtained by means of Vélu formulae (Vélu, 1971):

with 

being SG a system of representatives of the orbits of G under the action of the subgroup {-1, 1},

and the coefficients bi are defined in the following way: 

2.2 Isogeny Volcanoes and Cordilleras
Given an ordinary elliptic curve E/Fq and an l–isogeny  I:E ⎯→ E', Kohel (1996) introduced the
notion of direction of the isogeny, according to the relationship between the endomorphism rings O
and O' of the curves. Actually, Kohel shows that [O:O']=1, l or 1/l, and depending on each case, it
is said that the isogeny I is horizontal, descending or ascending, respectively. This notion of
direction can be exploited to represent isogenous curves by means of graph structures.

Then, an l–volcano (see Fouquet et al, 2002) is a directed graph whose nodes are isomorphism
classes of elliptic curves and whose edges represent l–isogenies among them. These graphs consist
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of a unique cycle (with one, two or more nodes) at the top level, called crater, and from each node
of the cycle hang l-1 trees which are l–ary complete, except in the case where the volcano is reduced
to the crater. The leaves of these trees are located at the same level, which form what is called the
floor of the l–volcano, while the remaining nodes of each tree constitute the volcanoside. Each node
of the l–volcano (except the leaves) has l+1 edges. More precisely, nodes in the volcanoside have
one ascending isogeny and l descending ones, while nodes on the crater have two horizontal
isogenies and l-1 descending ones (for craters with length greater than 2). The structure of a general
l–volcano for l=3 is given in Figure 1.

Given an elliptic curve E, its volcano of l–isogenies will be denoted by Vl(E). Taking into
account that, for a given prime l, the elliptic curves over a finite field Fq with the same cardinal can
be distributed in several l–volcanoes, the set of all these connex components will be named
l–cordillera.

The height of the volcano Vl(E) associated to a curve E/Fq can be obtained considering the
conductor f of the order Z[π], being π the Frobenius endomorphism of the curve. More precisely,
one can deduce that h(Vl(E))=vl ( f ), that is the height of the volcano coincides with the l–adic
valuation of the integer f. Nevertheless, there are efficient algorithms to determine the height of a
volcano which do not need to obtain f (see Fouquet et al, 2002; Miret et al, 2006). 

Concerning the study of the connex components of an l–cordillera, i.e. the volcanoes, we can
use the following result. 

Proposition 1 Let l and l' be prime numbers. Then,
i) All connex components of an l–cordillera of elliptic curves have the same height. 
ii) Elliptic curves which are in different levels of an l–volcano belong to different connex

components of any l'–cordillera, when l'≠l.

Proof:
All curves with the same cardinal determine the same conductor of the order generated by their
endomorphism of Frobenius. So the height of all volcanoes corresponding to these curves will
be the same. 
Regarding case ii) notice that if E and E' are two curves which both belong to two different
volcanoes V and V' of l and l'–isogenies, respectively, then the endomorphism rings satisfy
[O:O’]=ln and [O:O’]=(l')n'. Therefore, both relations can only hold when n=n'=0. Consequently,
E and E' must be located at the same level in V, as well as, at the same level in V'. 

Figure 1: Structure of a volcano of 3–isogenies
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2.3 Amount of Isomorphism Classes
Concerning the total number of nodes involved in a cordillera, it corresponds to the number of
isomorphism classes of elliptic curves over Fq, namely, the Hurwitz class number of the order Z[π],
being π the endomorphism of Frobenius of the curve. It is well known that this value can be
expressed in terms of the class numbers of certain orders (Cox, 1989), which can be obtained
computing the number of primitive positive quadratic forms of each discriminant.

More in detail, given a non–supersingular elliptic curve E over Fq, its endomorphism ring O can

be identified with an order of the imaginary quadratic field where t is the

trace of the Frobenius endomorphism of E (i.e. the difference between q+1 and the cardinal of E).
Then, the discriminant of Z[π] is dπ = t 2 - 4q = f02d, , and its conductor is 

As well, the discriminant of the integer ring of K coincides with the discriminant of the field K,
which is 

The endomorphism rings of the curves with trace t can be identified with orders O such that
Z[π]⊆O⊆OK, where OK is the ring of integers of K. The discriminant of each O is D=g2dK, where g | f.

Then the Hurwitz class number can be given as follows  

where h(O) denotes the number of isomorphism classes of curves with endomorphism ring O. 
Notice that to consider every possible O, one needs to deal with every possible discriminant D.
Hence, when the cardinal of the curves in the cordillera and the factorization of t 2 - 4q is known,
this can be efficiently computed (for instance with MAGMA (MAGMA-Handbook, 2006)). From
a practical point of view, the result is satisfying since it allows us to control the number of expected
nodes in each cordillera, in the case that the cardinal of the curves is known. 

3. PROCEDURE TO OBTAIN ISOGENOUS CURVES
Let l1<l2<…<llim be prime numbers (different from the characteristic p of the field) so that the curve
E/Fq admits li –isogenies, i.e., for which E/Fq has a rational subgroup G of order li. The algorithm
that we present generates all the li–isogenous curves of E until a given threshold llim. 

Then, given an initial curve E, this algorithm proceeds as follows. Firstly, its volcanoes Vl1
(E)

and Vl
2
(E) are completely constructed. Then, for each curve E' found  in  the  second  volcano and

not contained  in the first one, the volcano of l1–isogenies of E' is also obtained. Frequently, in these
new l1–volcanoes nodes will appear that do not belong  to  Vl

2
(E).  Hence,  for each of them,  its

corresponding l2–volcano is also generated. Proceeding this way, different connex components of
the l1 and l2 cordilleras are subsequently constructed. Once every curve appears in the l1–cordillera
as well as in the l2–cordillera, the procedure goes on obtaining the l3–volcano of E. The algorithm
proceeds similarly until all the li–isogenies have been calculated, without obtaining new nodes, for
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li ranging from l1 to llim. In the case that the Hurwitz class number can be computed, it can be used
to control the percentage of the whole amount of curves already visited in each cordillera.

3.1 Algorithm
The pseudo–code of the algorithm sketched above is the following:
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This algorithm takes, as input values, the initial elliptic curve E over Fq and a list LE with some
prime numbers li for which exist li–isogenies. We denote by llim the highest value in LE. As output
parameters, this algorithm returns the list of elliptic curves isogenous to E, whose degree is a
composition of primes in LE. These curves belong to the volcanoes obtained in the different
li–cordilleras. 

In the algorithm, the list Untreated [li] is used to store elliptic curves whose li–volcano has not
been constructed. On the other hand, the function Top(Untreated [li]) returns the first value of the
list Untreated [li]. Function lact-volcano(E) returns all nodes in the lact–volcano of E. Typically,
this function would find a path from the initial node towards the crater of the volcano and then
would go through every node in the volcanoside (Fouquet et al, 2002; Miret et al, 2006). In
addition, this function can also admit a parallel implementation to improve its performance
(Martínez et al, 2006).

Using this procedure, one can obtain a broad range of elliptic curves with the same good cardinal
(exploiting the fact that one has an initial good curve). Notice that an alternative method would be
taking random curves and checking their cardinality. This approach is much more expensive, since
the cost of obtaining the cardinal (using the usual SEA algorithm) is higher than computing a
low–degree isogenous curve.

3.2 Experimental Example
The previous algorithm has been implemented using the computer algebra system MAGMA (see
MAGMA-Handbook, 2006). We show an illustrative example, considering the field  F691 and  the
curves  with  cardinal  m=700=22527  and  t2-4q= -2700=-223352. In this case, the Hurwitz class
number is H(t2-4q)=38. Each isomorphism class is denoted as Ej, where j is the j–invariant of the
curves in the class.

The proposed algorithm has been executed to obtain the construction of the 2, 3, 5 and
7–cordillera. More in detail, the curves in each connex component are the following (the curves in
the same component are shown grouped).

As can be deduced from the l–adic valuations of t2-4q, the heights of the 2, 3 and 5 volcanoes
is 1, while the 7–volcanoes are flat.

Taking E53: y2 = x3 + 2x + 114 as the initial curve, the algorithm provides two connex compo-
nents of the 2 and 3–cordilleras (see Figure 2), which involve 6 isomorphism classes (out of 38).
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Hence, it is necessary to jump to the 5–cordillera to seek other isomorphism classes (Figure 3). This
5–volcano of E53 provides six new classes not previously visited, so six more 2–volcanoes can also
be generated (Figure 4) which again provide access to other isomorphism classes. The algorithm
would proceed constructing their 3–volcanoes (for instance the one corresponding to E497 (collected
in Figure 5). Finally, from the curves in this volcano, the two remaining connex components of the
2–cordillera are already reached, so the whole 38 isomorphism classes have been detected. In this
particular case, it is not necessary to take benefit of the 7–cordillera structure (Figure 6). 

Figure 2: Volcanoes of 2 and 3–isogenies
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Figure 3: Volcano of 5–isogenies

Figure 5: Volcano of 3–isogenies

Figure 6: Cordillera of 7–volcanoes

Figure 4: Volcanoes of 2–isogenies
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4. CONCLUSIONS AND FURTHER WORK
Obtaining cryptographically good elliptic curves is needed when setting up elliptic curve
cryptosystems, or even each time that the systems are updated. Taking a random curve and testing
its suitability is costly and turns out to be unfeasible when a huge amount of them are needed.

Hence, in this paper we face the problem of obtaining such curves. A procedure to obtain good
curves from a given  E/Fq is suggested. It is already known that curves in the l–volcano of E/Fq are
isogenous and, therefore, also cryptographically desirable. But, unfortunately, not every curve with
the same cardinal will belong to that volcano. So, the core of the algorithm lies on the fact that
curves that appear in a connex component of an li–cordillera, will also appear in some other
lj–cordillera, so the procedure of searching new curves can go on by jumping from one cordillera to
one other.

Experimental results performed seem to show that the behaviour of this jumping process follows
some particular patterns. An accurate study of these properties would be interesting, and could also
help in improving the presented algorithm.
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