
Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 2007 47

Genetic Clustering with Constraints
Saeed Parsa and Omid Bushehrian
Department of Computer Engineering,
Iran University of Science and Technology
{parsa, bushehrian}@iust.ac.ir

The aim is to facilitate the application of user defined constraints to the genetic clustering
algorithm. This is achieved by presenting a general penalty function. The penalty function is
defined as a normal distribution. The function is augmented to an extensible environment to
assemble genetic clustering algorithms, called DAGC. The main idea behind the design of DAGC
is to provide the researches with an environment to develop and investigate genetic clustering
algorithms by selecting the building blocks from an extensible library. It also provides the user
with some templates to build their own building blocks. This new version of DAGC is equipped
with some interfaces to define new constraints or to apply existing ones.

ACM Classification: G.3 (Mathematics of Computing, Probability and Statistics, Probabilistic
algorithms)

Manuscript received: 13 August 2005
Communicating Editor: John Yearwood

Copyright© 2007, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

1. INTRODUCTION
Graph clustering plays an important role in automatic distribution of sequential code (Kimelman et
al, 1997; Tilevich and Smaragdakis, 2002) and program re-modularization (Mitchell and
Mancoridis, 1999; Mitchell, 2002; Parsa and Bushehrian, 2004; Parsa and Bushehrian, 2005a; Parsa
and Bushehrian, 2005b). We have developed a tool, called DAGC (Parsa and Bushehrian, 2004;
Parsa and Bushehrian, 2005a; Parsa and Bushehrian, 2005b) to extract dependency graphs from
Java source code and cluster the graphs. The tool follows a framework where genetic clustering
algorithms can be assembled by simply selecting the building blocks from an extensible library. In
this paper a new extension of the DAGC to impose user defined constraints on graph clustering
algorithms is presented.

Graph clustering efforts have mostly focused on clustering and decomposition techniques based
on high intra-cluster or cohesion and low inter-cluster or coupling (Anquetil and Lethbridge, 1999;
Mitchell and Mancoridis, 1999; Mitchell, 2002; Parsa and Bushehrian, 2004; Parsa and Bushehrian,
2005b). However, there are situations where users want to impose their own constraints on the
clusters. The most usual approach to incorporate constraints into the genetic clustering process is
the penalty functions (Crossley and Williams, 1997; Coello, 2002). The method by which infeasible
individuals are penalized has a significant effect on their final fitness values and should be defined
carefully. In this paper an adaptive approach to apply constraints is proposed.

Within the DAGC environment users may define multiple constraints. This has been achieved
by augmenting the DAGC with a new component with a standard interface to define constraints. In
DAGC, there are three implementations of the component as defaults to impose the following
constraints:

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 47

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 200748

1. Clusters to be balanced
2. A number of nodes share the same cluster
3. Limit the number of clusters to a given range

In addition to the above mentioned constraints, users may define their own constraints and insert
them into the DAGC component library. To define a new constraint, an interface and a template is
presented in Section 3.1.

The remaining parts of this paper are organized as follows: Section 2, provides a detailed
description of our proposed normal distribution penalty function. The standard DAGC interface and
templates for defining constraints is presented in Section 3. Three examples of defining constraints
by implementing the proposed interface are presented in Section 4. Examples of applying the
constraints are also presented in Section 4. In Section 5 a general constrained genetic clustering
algorithm is presented. The algorithm invokes genetic parts with standard interfaces. This algorithm
is implemented in the DAGC environment, as a flexible tool to investigate constrained genetic
clustering algorithms.

2. RELATED WORKS
Constraints are essential parts of the clustering process. The most popular approach to apply
constraints is to define penalty functions (Gen and Chang, 1997; Crossley and Williams, 1997;
Coello, 2002; Homaiffar et al, 1994; Joines and Houck, 1994). The penalty function could be
assumed as a distribution of the distances of infeasible individuals in a problem search space from
the feasible region. In general, there are three classes of penalty functions called quadratic, linear
and step linear (Crossley and Williams, 1997). These functions could be applied adaptively by the
means of a draw-down coefficient. The draw-down coefficient could be either a constant
(Homaiffar et al, 1994) or a variable whose value is increased as the generation number grows
(Crossley and Williams, 1997; Joines and Houck, 1994). This approach does not adapt the penalty
value to the relative characteristics of successive generations. To resolve the difficulty, the variance
of the population fitness in each generation is considered as the draw-down coefficient (Crossley
and Williams, 1997). In this strategy as the variety of the individuals fitness values grows the
variance increases and more penalties are applied to the individuals. However in this strategy, the
variance of a homogeneous population will be the same whether the individuals are feasible or
infeasible whilst the amount of the penalty should vary depending on the degree of feasibility of the
individuals. Hence, it is observed that the feasibility of a population affects the amount of the
penalty. In the strategy proposed in this paper, the draw-down coefficient is defined as a function of
the infeasibility of the genetic population where the infeasibility of each chromosome is defined as
the distance of that chromosome from the feasible region. In the next section the overall description
of our proposed penalty function is presented.

2.1 Overall Description
The penalty value for each solution within a genetic population of solutions can be considered as a
function of the distance of the solution from the feasible area where all the solutions satisfy the
constraint (Crossley and Williams, 1997). Obviously the distance of a feasible solution from the
feasible area is zero. If we consider a normal distribution, N(d(x), µ, σ) for the penalty values, then
the mean value of the normal distribution should be zero because all the distances are computed
relative to the mean value, µ, which is the value for the solutions in the feasible area. The mean of
the normal distribution, µ, represents a feasible solution because the value of the normal

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 48

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 2007 49

distribution function at µ, N(µ, µ, σ), is maximum on the other hand the penalty value for a feasible
solution in our clustering algorithm, which is a maximization problem, as shown in relation (6) is
the maximum value of the penalty function.

The standard deviation, σ, is a measure of the feasibility of the genetic population, because it is
equal to the sum of the distances of solutions within the genetic population because it is the mean
deviation of distances of individual solutions within the genetic population from the feasible region.
As the number of feasible solutions in a genetic generation increases the value of σ reduces and as
shown in Figure 1, the skewness of the normal distribution increases and as a result more penalty
values will be calculated for the less feasible solutions. In this way, recalculating the value of σ for
each generation the penalty function adopts itself to the ratio of infeasible solutions within the
population.

2.2 Penalty Function
Considering a given constraint, the population of chromosomes in each generation can be divided
into two groups of feasible and infeasible solutions. An infeasible solution does not satisfy the
desired constraint. The degree of infeasibility of a solution, c, is considered as the distance, d(c), of
its constraint value, g(c), from the feasible region. Here, we have considered a normal distribution
function for computing a penalty value from a given distance value. For instance, if the constraint
is to balance the number of nodes residing in each cluster of a clustering, c, then g(c) can be defined
as the mean deviation of the number of nodes in each cluster of c. Obviously for a feasible solution
cfeasible, g(cfeasible)=0. The un-scaled penalty value u_p(c) for each solution, c, is computed as
follows:

u_p(c) = N(d(c), 0 ,σt) (1)

σt
2 = ∑ d(ci) , ∀ ci ∈ population in genration t (2)

d(ci) = g(ci) – g(cfeasible)

If the quadratic and linear (Crossley and Williams, 1997; Lopez-Vallejo et al, 2000) distributions
are used, the penalty values will be calculated as follows:

u_p(c) = d(c) for linear distribution. (3)

u_p(c) = d(c)2 for quadratic distribution. (4)

Infeasible solutions are either filtered out or penalized. To penalize an infeasible solution, c, its
fitness can be reduced by a penalty factor P ∈ [0, 1] as follows:

Figure 1: The effect of varying σt in a normal distribution

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 49

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 200750

P(c) = (u_p(c) – u_p(c0)) / (u_p(cfeasible) – u_p(c0)) (5)

penalizedFitness(c) = estimatedFitness(c) * P(c) (6)

In the above relation, c0 is the solution for which the distance d(c0) from the feasible solution is
maximum and cfeasible is the solution for which the distance d(cfeasible) from the feasible solution is
zero(i.e cfeasible is a feasible solution). Using the above relations, a penalty value of 0 is assigned to
the most infeasible solution and a penalty value of 1 is assigned to each feasible solution.

2.3 Adaptive Penalty
In some situations it gets very difficult to find feasible solutions which satisfy a given set of
constraints. The difficulty of satisfying the constraints can be characterized by the size of the
feasible region compared to the size of the genetic population. A simple approach to alleviate the
difficulty is to adapt the penalty value to the proportion of the feasible region.

Obviously when you have more choices you can be stricter. Similarly, when the ratio of the
feasible solutions in a generation gets higher, more penalties can be applied to less feasible
chromosomes. This can be achieved by increasing the skewness or slope of the penalty function
because the curvature of this function has a direct impact on the amount of the penalty to be applied
on infeasible chromosomes.

For instance, in Figure 2, two normal distribution functions N(x,0,1) and N(x,0,5) are used to
define the distribution of the distances. It is observed that increasing the skewness of the normal
distribution from 1 to 8 the amount of u_p(x) increases for those solutions x for which d(x) is close
to the origin. Hence, when the number of feasible solution in a population, t, increases the amount
of σt in the normal distribution is decreased. In this way those solutions which are near the feasible
region are less affected by the value of the penalty, P(c), and more penalty value is imposed on the
more infeasible solutions. This is achieved by defining σt as follows:

σt
2= ∑ d(ci) , ∀ ci ∈ population in generation t (7)

Therefore, recalculating σt for each generation t, the penalty function adapts itself to the
proportion of the feasible solutions within the genetic population. In the following subsection
multiple constraints are described.

2.4 Multiple Constraints
In DAGC environment to apply multi-constrains, users can define a weight level for each constraint.
By default four different weight levels of low, middle, high and very high are provided by the

N(x,0,1)
N(x,0,5)

Figure 2: The effect of varying σt in a normal distribution

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 50

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 2007 51

environment. In addition, users can also introduce their own weight levels in the environment. Each
weight level is associated with a weight value by which the relative importance of the corresponding
constraint is declared. These weight values affect the calculated penalty values for each constraint.
For instance in the following example four different weight levels: low, medium, high and VHigh
and their corresponding weight values 1, 2, 4 and 8 are presented using the following XML format:

<level1 Level=“low”>1</Level1>
<level2 Level=“medium”>2</Level2>
<level3 Level=“high”>4</Level3>
<level4 Level=“vhigh”>8</Level4>

Suppose that, for a given solution, C, the amount of penalties evaluated for three different
constraints C1, C2 and C3 are P1, P2 and P3 and they have weight levels 1, 2 and 4 respectively. The
penalized fitness, FC, for the solution will be computed using the following relation:

FC = FitnessC * (1*P1 + 1/2*P2 + 1/4 *P3)/ (1+ 1/2 + 1/4)

In the above relation, penalty values P1, P2 and P3, are multiplied by the inverse of the weight
assigned to their corresponding constraints. Obviously, the higher the weight assigned to a
constraint the more the constraint affects the feasibility of the chromosome and hence each penalty
value is divided by the value of the weight assigned with the constraint. In the following subsection
a general penalty function is presented.

3. CONSTRAINT COMPONENTS
In this section, firstly, a general template for defining constraints, using the proposed penalty
function is presented. Then, the DAGC interfaces for defining the constraints are described.

3.1 Constraint and Penalty Functions
Within the DAGC environment new constraints can be defined and inserted into the DAGC
component library. Each user-defined constraint adheres to the following standard interface.

Interface Constraint {
Double g (Clustering C); // returns the constraint value for C
Double d (Clustering C); // returns the distance of solution C from the

// feasible region.
Double d0 (Clustering C); // returns the maximum distance from the feasible

// region
Double Sigma (population thepop); //returns the value of parameter σ

//considering the no. feasible solutions
}

In the above interface definition the method g(c) determines the constraint value for a given
clustering c; d(c) returns the value “g(c) – g(cfeasible)” for a given constraint which is the distance of
the solution c from the feasible region; d0(c) determines the maximum possible distance from the
feasible region; Sigma(thepop) depending on the constraint uses certain characteristics of the
genetic population to work out the mean deviation of the normal distribution. Three imple-
mentations of this interface for three different constraints are presented in the following subsections.
The penalty value for a given constraint is calculated with the following function:

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 51

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 200752

Double P(Constraint constraint_impl, Clustering c,Population thepop)
{ σt= constraint_impl.Sigma(thepop) // get the normal distribution

// mean-deviation considering the
// population characteristics

d0= constraint_impl.d0(c) // getting the maximum distance
// region from the feasible

d= constraint_impl.d(c) // calculating the penalty value
u_p=N(d , 0, σt)
u_pfeasible = N(0 , 0, σt)
u_p0= N(d0 , 0, σt)
p= (u_p - u_p0) / (u_pfeasible – u_p0) // scale the penalty value into range [0 1]
return p;

}

The function P takes a reference to the function g(c) to evaluate the constraint value for a given
solution c. P then calculates the penalty value for c using relation (5), described above. The rate of
feasibility of the population affects the resultant penalty for the solution c.

3.2 User Interfaces
Within the DAGC environment, new constraints can be defined as a class implementing the
constraint interface described above in Section 3.1. For each user defined constraint class, the
Constraint interface is implemented using the dialog box shown in Figure 3.

After a constraint is defined, it is automatically augmented to the DAGC component library. To
apply the constraint to genetic clustering algorithms, created within the DAGC environment, the
dialog shown in Figure 4 can be used.

4. DEFAULT CONSTRAINTS
Constraints are naturally available in many clustering applications. The problem of clustering with
constraints is receiving increasing attention. Simple examples of clustering constraints are as
follows:

Figure 3: Defining a new user-defined constraint by implementing the Constraint interface

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 52

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 2007 53

1. Minimum and maximum numbers of clusters,
2. Two or more nodes share a same cluster,
3. Limits on the variation in cluster size,
4. Bounds on the number of nodes in each cluster,
5. Two or more nodes appear in different clusters.

The first three constraints are defined as defaults in DAGC. The code for implementing these
constraints and the results of applying the constraints is presented in the following subsections.

4.1 Limiting the Number of Clusters
In this subsection a constraint to restrict the number of clusters, k, to a range of integers, k1 to k2,
such that k1≤ k ≤k2, is presented. Since this constraint is applied to the number of clusters, the
function g(c) should return the number of clusters for a given clustering, c. If for a given solution,
c, the number of clusters, n, is within the range k1 to k2 then c is a feasible solution. Below, is the
code for the functions g(c) and d(c):

Double g(Clustering c)
{return c.clusterNumbers(); //returning the number of clusters }

Double d(Clustering c)
{if g(c) > k1 and g(c) <k2 then // if c is feasible then g(c) – g(cfeasible) is zero

then return 0
else
return min(|g(c)-k1| , |g(c) – k2|) // the least value for g(c) – g(cfeasible)

}

To alter the value of penalty, p, proportional to the number of feasible solutions in the genetic
population the value of σt is recalculated for each generation using the relation 7 above. As shown
in Figure 5, within the range of acceptable number of clusters, k1 to k2, the value of the penalty
function, P, is 1. The value of P drops radically as the number of clusters approaches the minimum
possible number of clusters, 1, and maximum number of clusters, n.

Figure 4: Selecting a constraint to be involved in the clustering algorithm

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 53

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 200754

4.2 Balanced Cluster Sizes
The second default constraint is concerned with balancing the cluster sizes. That is, the graph nodes
have to be equally partitioned into clusters of the same size. In order to impose the constraint, the
method g(c) is implemented as follows:

Double g(Clustering c)
{ avg = c.GraphNodeNumber() / c.clusterNumber() // number of nodes in each

//cluster when clusters balanced
// compute deviation from balance

For i=1 to c.clusterNumbers() do
σ2 += (c.clusters[i].size - avg)2

return σ;
}

In the above implementation of the function g, first the number of nodes in each cluster, when
balanced, is computed and stored in a variable, avg. Then, the variance for the given solution, c, is
computed and kept in σ2. The mean deviation σ, is finally returned as the constraint value for c. The
distance of the solution c from the feasible region, is defined as the mean deviation, σ, as well.
Below, is the implementation for the method d(c):

Double d(Clustering c)
{ return g(c); //since g(cfeasible) is zero so g(c) – g(cfeasible) is equal to g(c) }

4.3 Nodes Sharing a Same Cluster
There are certain situations where a number of graph nodes are to appear in the same cluster. Here,
the constraint value, g(c), for a given solution c, is computed as the minimum number of movements
required to move the specified nodes into a same cluster. Below, the methods g(c) and d(c) are
presented:

Double g(Clustering c)
{ Let M={ni1,ni2,…,nit} be the set of t nodes to be collocated

Let tmax= maximum number of collocated nodes which belong to M.
Movements = t - tmax // minimum number of movements required
Return movements

}
Double d(Clustering c) { return g(c) }

Figure 5: The penalty function curve for confining the number of clusters between k1 and k2

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 54

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 2007 55

As described above in Section 2.1, the return value of the method g is used in relation (1) to
calculate the value for un-scaled penalty value.

4.4 Experimental Results
In this section the quality of clustering and the number of feasible solutions in each generation of
the genetic clustering algorithms when applying the normal distribution penalty function and a
quadratic function are compared. The quadratic and normal distribution penalty functions are
defined and implemented for the three constraints described above in Sections 4.1 to 4.3. The
penalty functions are associated with a genetic clustering algorithm within the DAGC environment.
The clustering algorithm is applied to a class dependency graph extracted from a Java source code.
The graph is clustered by applying the constraints. For each constraint, the quality of the best
feasible solution is recorded first with our adaptive normal distribution penalty function and then
with the quadratic penalty function. The clustering objective function here is TurboMQ (Mitchell
and Mancordis, 1999) which attempts to maximize cohesion of the nodes in each cluster and
minimize the coupling amongst clusters.

As shown in Figure 6, by applying our adaptive normal distribution penalty function, higher
quality of results for the three constraints can be achieved in comparison with the traditional
quadratic penalty approach. A main reason is the adaptive nature of the normal distribution penalty
function. In early generations of the genetic algorithm execution, the value of the parameter σ gets
bigger because of the large amount of infeasible solutions in the population. As shown in Figure 1,
the bigger the value of σ the less the curvature of the normal distribution function will be. Therefore,
all the solutions in the population will be penalized almost identically and solutions with higher
fitness will survive in the subsequent generation. By growing the number of feasible solutions
gradually, the value of σ is reduced due to the higher ratio of feasible solutions in the population
and the infeasible solutions will be penalized much more than before and consequently the
algorithm tends to maintain the feasibility of the population.

Using the adaptive normal distribution penalty function not only produces feasible solutions
with higher quality values but also finds feasible solutions earlier. Furthermore, in subsequent
generations the amount of feasible solutions gets higher. Figure 7 shows a comparison of the degree
of constraint violation when applying the normal distribution and the quadratic penalty function for

Figure 6: Qualities of results using normal distribution and quadratic penalty functions

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 55

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 200756

the three constraints. The value of constraint violation is a measure of the generation feasibility
which is computed by summing up the amount of infeasibility of individuals in the generation.

5. GENERAL CONSTRAINED CLUSTERING ALGORITHM
In this section the design of the DAGC environment is described. In Section 5.1 a general
constrained genetic clustering algorithm is presented. Section 5.2 includes a brief description of the
DAGC architecture.

5.1 A General Constrained Clustering Algorithm
In order to achieve flexibility in modification and assembly of genetic clustering algorithms a
general algorithm is presented. The algorithm invokes a basic set of operations, generally appearing
in genetic clustering algorithms. The basic operations of a typical genetic algorithm are summarized
below:

1. Map the search space of all possible solutions of the problem onto a set of finite strings (chromosomes)
over a finite alphabet.

2. Randomly select the initial population (first generation) of solutions.
3. Compute the fitness (measure of the quality) of each individual in the population.
4. Perform crossover between pairs of individuals to create new individuals and replace the randomly-

selected individuals with these new individuals.
5. Randomly mutate a small part of the resulting population from last steps.
6. Repeat the optimization process starting at point 3 until a stopping condition is met. For instance, the

optimization process may stop when the population converges to a state where majority of the
chromosomes represent a single solution which is considered to be best.

Typical operators for all types of genetic algorithms are: selection, crossover and mutation. Each
of the operations can be implemented as a function with a standard interface, being accessed by a
general clustering algorithm. To define a general algorithm a comprehensive study of the existing
algorithms was carried out. In general, there are a fixed set of operators and GA parts appearing in
genetic clustering algorithms which are highlighted in bold in Figure 8, opposite.

Defining, a function with a standard signature for each of the GA parts, invoked by the general
algorithm, various implementations for the parts may be used, without any need to change the body
of the algorithm. For instance, there are several schemes for the selection operator such as roulette
wheel, tournament, elitist models, and ranking methods (Gen and Chang, 1997). Defining a unique

(1) No. Nodes within a range (2) Clusters of equal size (3) Nodes collocation

Figure 7: Degree of feasibility for different generations

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 56

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 2007 57

Figure 8.: A general constrained clustering algorithm

Genetic Component Interface Description
Decode a chromosome Interface Decoder{ decodes a chromosome C into a

Decode (Chromosome C, Graph G clustering G.
Vector NodeSequence);}

Fitness Calculation Interface Fitness{ Calculate the fitness of
CalculateFitness(Graph chromosome C.
Chromosome C); }

CrossOver Interface Xmethod{ Creating offspring from parents
CrossOver(Chromosome parrent_1,
Chromosome parrent_2,
Chromosome offspring_1,
Chromosome offspring_2,
double probability); }

Mutation Interface mutation{ Mutate a chromosome c
Domutation(Chromosome C,
double probability); }

Selection Interface selection{ Returns a chromosome according
Select(Population thepop);} to the selection mechanism.

Local Improvement Interface improvement{ Returns the best neighbor of a
Improve (Chromosome C, Decoder chromosome if found.
thedecoder,Graph g, Fitness
thefitness); }

Random Generator Interface randoize{ Generates the first generation
randomize(Chromosome c); } population

Constraint Interface Constraint{ A user defined constraint
Double g(Graph g);
Double d(Graph g) ;
Double d0(Graph g);
Double sigma(Population thepop) ;}

Figure 9.: Interface definition for some of the genetic parts in DAGC

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 57

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 200758

interface for the selection function each of these schemes may be used without modifying the rest
of the genetic algorithm which makes use of the selection function. Below, the interfaces of some
of the function implementations for the GA parts are presented.

Using the standard Interfaces presented in Figure 9, users can provide their own implementation
of the genetic parts. For instance, user can define several constraints for the clustering genetic
algorithm by implementing the interface described in Section 2.2.

5.2 DAGC Architecture
The architecture of DAGC is shown in Figure 10. There are two layers; the top layer consists of
services provided by the tool. The bottom layer contains a complete programming API which
implements the main functionality of DAGC.

5.2.1 API Layer
The API layer is an independent layer which includes a useful and complete set of Java classes.
These classes are arranged in five packages as follows:

(1) ClusteringAPI: The ClusteringAPI package provides useful classes and interfaces which
implements standard interfaces described in Section 3.

(2) GraphAPI: The GraphAPI package provides a set of classes which can be used to generate and
display three kinds of benchmark graphs called Random, Caterpillar and software graphs (Mitchell,
2002). These three types of graphs are used for assessment of the genetic algorithms developed
within the DAGC environment. Random Graphs are shown by R.n.d symbol (Bui and Moon, 1996).
Here, n is the number of graph nodes and d is the average degree of graph nodes (for example R.30.2
defines a graph with 30 nodes and average degree 2 for graph nodes). Software graphs are special
types of Random Graphs. Experiments with several software graphs show that in these graphs the
number of edges grows linearly with respect to the number of nodes, (O(|E|)=O(|V|)) (Mitchell,
2002). A random software graph is defined by two parameters: n which is the number of graph nodes

Figure 10: DAGC Architecture

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 58

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 2007 59

and k, a coefficient which defines the proportion of edges and nodes of that graph. By creating a
random software graph in DAGC, one can simulate a graph extracted from a real software system,
so he will be able to produce a software-like graph immediately in DAGC to evaluate his GA.

(3) I/O API: This package provides a number of useful classes for loading and writing graph files.
Here, we support three formats for importing or exporting graph files which are: Dotty-AT&T,
XML and Text (Mitchell, 2002).

(4) Source Model API: This package contains a number of classes to extract call graphs from a Java
source code. To extract class dependency graphs different algorithms (Sundaresan and Hendren,
2000) are available in the DAGC tool. These algorithms present different heuristics to resolve
polymorphic calls. As we mentioned earlier, a call graph which is an input to the clustering
algorithm, is a graph in which a node represents a class and an edge represents a call between two
classes.

(5) Constraint API: This package contains classes and interfaces which provide predefined
constraints described in the previous section and abstract interfaces allowing the user to augment
new constraints into the environment.

5.2.2 Services Layer
This layer provides five major services through components called managers: Clustering Manager
which allow the user to assemble a new genetic clustering and start that, Graph Manager which
allow the user to make different benchmark graphs, Source Model Manager which is used for
extracting dependency graphs from the Java source, Constraint manager which allows building of
a constraint based clustering and Customizer manager which allows to augment user-defined
components to the environment.

6. CONCLUSIONS
It is possible to simply apply constraints by implementing a general interface, presented in this
paper. In order to implement the interface, a function to estimate the distance of each solution from
the feasible region has to be supplied, by the user. Three implementations of the interface for
applying the three common clustering constraints to limit the number of clusters within a given
range, balance cluster sizes and collocation of certain nodes in a shared cluster is presented. The
constraints are also implemented using a quadratic penalty function and compared with the normal
distribution. Experimental results with the penalty functions show that the normal distribution
functions eventually leads the genetic clustering algorithm to the feasible region faster than the
quadratic penalty functions.

The normal distribution penalty function is adaptive by its nature because, the variance of the
distribution depends on the proportion of feasible solutions in a population. Hence, as the number
of feasible solutions in a genetic population increases the variance reduces and the skewness of the
normal penalty function increases. As a result, more penalty will be applied to less feasible
solutions. Our experimental results demonstrate a better quality of the solutions when applying the
normal distribution compared with the quadratic penalty functions.

Providing a standard interface for the constraint supports defining any arbitrary user-defined
constraint and augmenting it to the environment. Imposing constraints on the genetic clustering
always reduces the quality of solutions in the population. By using the normal distribution penalty
function less reduction in the quality values of the feasible solutions was observed.

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 59

Genetic Clustering with Constraints

Journal of Research and Practice in Information Technology, Vol. 39, No. 1, February 200760

REFERENCES
ABREU, F.B., PEREIRA, G. and SOUSA, P. (2000): A coupling guided cluster analysis approach to reengineer the

modularity of object oriented systems, Conference on Software Maintenance and Reengineering, IEEE.
ANQUETIL, N.C. and LETHBRIDGE T. (1999): Experiments with clustering as software re-modularization method, in

Proc. of working Conf. On Reverse Engineering, IEEE October.
BUI, T. N. and MOON, B. R. (1996): Genetic algorithm and graph partitioning, IEEE Trans. Comput., 45: 841–855, July.
COELLO, C. (2002): Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: A

survey of the state of the art, Computer Methods in Applied Mechanics and Engineering, 191: 1245–1287.
CROSSLEY, W.A. and WILLIAMS, E.A. (1997): A study of adaptive penalty functions for constrained genetic algorithm

based optimization, Aerospace Sciences Meeting and Exhibit, 35th, Reno, NV, January 6–9.
GEN, M. and CHANG, R. (1997): Genetic algorithm and engineering design, John Wiley and Sons.
HOMAIFFAR, A., QI, C. and LAI, S. (1994): Constrained optimization via genetic algorithms, Simulation, 62: 242–254.
JOINES, J. and HOUCK, C. (1994): On the use of non-stationary penalty functions to solve nonlinear constrained

optimization problems with GAs, Proceedings of the First IEEE Conference on Evolutionary Computing, 579–584.
KIMELMAN, D., ROTH, T., LINDSEY, H. and THOMAS, S. (1997): A tool for partitioning distributed object

applications based on communication dynamics and visual feedback, Proceedings of the Advanced Technology
Workshop, Third USENIX Conference on Object-Oriented Technologies and System.

LOPEZ-VALLEJO, M.L., GRAJAL, J. and LOPEZ, J.C. (2000): Constraint-driven system partitioning, Design,
Automation and Test in Europe (DATE ’00).

MITCHELL, S.B. (2002): A heuristic search approach to solving the software clustering problem, Thesis , Drexel
University, March.

MITCHELL, S.B. and MANCORIDIS, S. (1999): Bunch: A clustering tool for the recovery and maintenance of software
system structure, in Proc. of International Conf. of Software Maintenance, IEEE.

PARSA, S. and BUSHEHRIAN, O. (2004): A framework to investigate and evaluate genetic clustering algorithm for
software re-modularization, Lecture Notes in Computer Science, 3036.

PARSA, S. and BUSHEHRIAN, O. (2005): A new encoding scheme and a framework for investigating genetic clustering
algorithms, The Journal of Research and Practice in Information Technology, 37(1): 127–143.

PARSA, S. and BUSHEHRIAN, O. (2002): The design and implementation of a framework to automatic modularization of
software systems, Journal of Super Computing, 31, April.

SUNDARESAN, V. and HENDREN, L. (2000): Practical virtual method call for Java, Proceedings of the conference on
Object-Oriented Programming, Systems, Languages, and Applications.

TILEVICH, E. and SMARAGDAKIS, Y. (2002): J-rchestra:Automatic Java application partitioning, European Conference
on Object-Oriented Programming (ECOOP), Malaga, June.

BIOGRAPHICAL NOTES
Saeed Parsa received the BSc in mathematics and computer science from
Sharif University of Technology, Iran, the MSc degree in computer science
and the PhD in computer science from the University of Salford, England. He
is an associate professor of computer science at Iran University of Science
and Technology. His research interests include software engineering, soft
computing and algorithms.

Omid Bushehrian received the BSc in software engineering from AmirKabir
University of Technology (Tehran Polytechnics), Iran, the MSc degree in
software engineering from the University of Science and Technology, Iran. He
is now a PhD student in software engineering at Iran University of Science
and Technology. His research interests include distributed systems and
clustering algorithms.

Saeed Parsa

Omid Bushehrian

JRPIT 39.1.QXP 4/4/07 2:18 PM Page 60

