
Journal of Research and Practice in Information Technology, Vol. 36, No. 2, May 2004 89

Selecting Views with Maintenance Cost Constraints:
Issues, Heuristics and Performance
Jeffrey Xu Yu
The Chinese University of Hong Kong, Hong Kong, China
email: yu@se.cuhk.edu.hk 

Chi-Hon Choi
The Chinese University of Hong Kong, Hong Kong, China
email: chchoi@se.cuhk.edu.hk 

Gang Gou
The Chinese University of Hong Kong, Hong Kong, China
email: ggou@se.cuhk.edu.hk 

Hongjun Lu
Hong Kong Uni. of Science and Technology, Hong Kong, China
email: luhj@cs.ust.hk

In order to efficiently support a large number of on-line analytical processing (OLAP)
queries, a data warehouse needs to precompute or materialise some of such OLAP
queries. One of the important issues is how to select such a set of materialised views in
order to minimise the total processing cost for OLAP queries. The maintenance-cost
view-selection problem is to select a set of materialised views under a maintenance
cost constraint (such as maintenance time), in order to minimise the total query
processing cost for a given set of queries. This problem is more difficult than the view
selection problem under a disk-space constraint, because a selected view may make
the previously selected views less beneficial, due to the fact that the total maintenance
cost for a set of views may decrease when more views are materialised while the
maintenance cost always increases under disk-space constraint. The problem has
recently received significant attention. Several greedy/heuristic algorithms were
proposed. However, the quality of the greedy/heuristic algorithms has not been well
analysed. In this paper, in a multidimensional data warehouse environment, we re-
examine the greedy/heuristic algorithms in various settings, and provide users with
insights on the quality of these heuristic algorithms.
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1. INTRODUCTION
Business landscape is quickly evolving, and markets are much more competitive and dynamic than
ever. Businesses in every segment of the industry realise that their corporate and customer databases
are gold mines of information that could give them a critical edge by helping them to manage
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investment, map market development, identify new customer prospects, anticipate demands on
banking services, and predict consumer preferences and habits. As a collection of decision support
techniques that aim at enabling executives, managers and analysts to make better and faster
decision, data warehouse and on-line analytical processing (OLAP) have been successfully
deployed in many industries such as manufacturing, retail, financial services, transportation,
telecommunications, health-care, etc. The amount of potential data that needs to be maintained
tends to be hundreds of gigabytes or terabytes in size. User queries include ad-hoc queries and
complex queries that need to conduct statistical analysis by performing aggregate operations against
millions of records. Therefore, OLAP query processing time becomes critical since executives,
managers and analysts need to make decisions in a short time.

Precomputing OLAP queries – materialising views with aggregate functions – has been widely
used as a common technique in data warehouses (Gupta and Mumick, 1999a). In a multidimen-
sional data warehouse that consists of a fact table and a collection of dimension tables (Kimball,
1997), OLAP queries (views) can be formalised as a dependent lattice (Harinarayan, Rajaraman and
Ullman, 1996), which can be represented as a directed acyclic graph. Take a real store chain
application that only has four dimensions, namely, Product (50 attributes), Store (20 attributes),
Time (10 attributes) and Promotion (10 attributes) given in Baralis, Paraboschi and Teniente (1997)
and Kimball (1997), as an example. The corresponding graph may have over 290 vertices. The
potential graphs to be dealt with can be very large. The materialised view selection problem is to
select an appropriate set of materialised views under a maintenance resource constraint, in order to
minimise the total query processing cost for all queries. The disk-space view-selection problem is
to select a set of interrelated views that minimises the total query processing cost under a given disk-
space constraint (Harinarayan, Rajaraman and Ullman, 1996; Gupta et al, 1997; Gupta, 1997;
Shukla, Deshpande and Naughton, 1998). For the disk-space view-selection problem, the benefit of
the view having been chosen will remain unchanged in the subsequent view-selection process. It is
formally defined as a monotonic property.

However, in real applications, the real constraint is more likely to be the maintenance-cost incurred
in maintaining the materialised views up to date in a data warehouse. The maintenance-cost view-
selection problem has been proven to be NP-hard (Gupta and Mumick, 1996b). In Gupta and Mumick
(1996b), it claimed that the greedy algorithms that select views on the basis of query-benefit per unit
maintenance-cost can deliver an arbitrarily bad solution due to the non-monotonic property of the
maintenance-cost view-selection problem. In other words, a selected view may make the previous
selected views less beneficial, because the total maintenance cost for a set of selected views may
decrease when more views are materialised. Gupta and Mumick proposed two algorithms, namely,
inverted-tree greedy and A*-heuristic to solve this intractable problem in OR view graph and AND-
OR view graph respectively (Gupta and Mumick, 1996b). In Liang et al (2001), Liang et al proposed
two algorithms, two-phase greedy and integrated greedy, to solve the maintenance-cost view-selection
problem. The two algorithms are designed on the basis of query-benefit per unit maintenance-cost.
Liang et al (2001) claimed that the two algorithms are able to find feasible solutions in polynomial
time. But, no analytical and performance studies were given in Liang et al (2001).

To deal with the maintenance-cost view-selection problem, algorithms that provide a near
optimal solution in polynomial time are highly desirable. But, the arguments presented in Gupta and
Mumick (1996b) and Liang et al (2001) are not consistent. On the basis of query-benefit per unit
maintenance-cost, the former indicated that greedy algorithms can generate an arbitrarily bad
solution. The latter argued that greedy algorithms can possibly generate feasible solutions. The
algorithms cannot be used without any systematic study on the quality.



Selecting Views with Maintenance Cost Constraints: Issues, Heuristics and Performance

Journal of Research and Practice in Information Technology, Vol. 36, No. 2, May 2004 91

Our main contribution, in this paper, is to provide users with insights on the heuristic algorithms
in terms of both processing time for the algorithms to find a solution and the effectiveness of the
algorithms to minimise query processing cost. We investigated inverted-tree greedy, A*-heuristic,
two-phase greedy and integrated greedy algorithms in various settings for the general case of
dependence lattice. The academic significance of this work is of twofold. First, it provides a view
on how to use the heuristic algorithms. Second, it assists us to design new heuristic algorithms.
Based on our extensive studies, we observe that greedy algorithms perform well under certain
conditions. Our finding explored that the existing A*-heuristic (Gupta and Mumick, 1996b) cannot
always find optimal solutions1. 

The rest of the paper is organised as follows. The maintenance-cost view-selection problem will
be defined in Section 2 with a general cost model. Motivation will be addressed in Section 3
including examples. Section 4 discusses the four existing algorithms: the inverted-tree greedy, the
A*-heuristic, the two-phase greedy and the integrated greedy for solving the maintenance-cost
view-selection problem. Discussions are included to outline the strength and weakness of these four
algorithms. We conducted extensive experience studies, and will report the result in Section 5. We
conclude this paper in Section 6.

2. THE MAINTENANCE-COST VIEW-SELECTION PROBLEM
Like Harinarayan et al (1996), we denote a lattice with a set of elements (queries and views) L and
a dependence relation (derived-from, be-computed-from) by (L, ). Given two queries qi and
qj. We say qi is dependent on qj, (qi qj ), if qi can be answered using the results of qj. The lattice
(L, ) is called dependent lattice. For elements a and b of a lattice (L, ), a b means a b
and a ≠ b. The ancestors and descendents of an element of a lattice (L, ), are defined as ancestor (a)
= {b | a b} and descendant(a) = {b | b a}, respectively. A dependent lattice can be repre-
sented as a directed acyclic graph in which the lattice elements are vertices and there is an edge from
a to b, if b a and c(b c∧c a). There is a path downward from a to b if and only if b a.

A Multidimensional Database (MDDB) is a collection of relations, D1,… , Dm, F, where Di is a
dimension table and F is a fact table as described in Baralis, Paraboschi and Teniente (1997) and
Kimball (1996). It is worth noting that, in most real applications, an MDDB consists of multiple
dimensions each of them in turn can be organised as hierarchies of attributes. Consider the large
grocery store chain example given in Baralis, Paraboschi and Teniente (1997) and Kimball (1996).
The store chain has four dimensions, namely, Product, Store, Time and Promotion. The
Product dimension has more than 50 attributes such as brand, category, diet-type, package type,
weight, case size and a merchandise hierarchy. The Store dimension has more than 20 attributes
including store address, telephone number, manager, description of store services, and sizes of
different departments. It also has a geographic hierarchy. The Time dimension is characterised by
the granularity of day: day in the month, in the quarter and in the year, holiday, special events, as
many as more than 10 attributes. There are different granularity of the time hierarchy, namely, day,
week and month, year. The Promotion dimension contains 10 attributes such as the promotion
type, promotion cost and start/end data, etc.

Suppose that an MDDB has m dimensions and the i-th dimension has ni attributes. Assume that
each dimension is characterised as a dimensional dependent lattice. The dependent lattice for the i-
th dimension will have 2ni elements. If queries/views can be issued/made by grouping any subsets
of attributes from any or no member of m dimensions, the total number of elements for the MDDB

1 The preliminary work was reported in CYG02.
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will be . Therefore, the dependent lattice (L, ) in question is much more complex
than a hypercube lattice. As for the store chain example, the number of elements is greater than 290.
Here, let (a1, a2, … , am) be an m-tuple where each ai is a point in the hierarchy of the i-th dimension,
the dependence relation can be defined as (a1, a2, … , am) (b1,b2, …bm) if and only if ai

bi for all i. This is called the direct product of the dimensional lattices in Harinarayan et al (1996).
A simple direct product of two dimensional lattices is shown in Figure 1.

A direct-product of the dimensional lattice is represented as a directed acyclic graph G = (V, E),
where V is a set of vertices and E ⊆ V × V. We use V(G) for the set of vertices of a graph G. The
graph G has the following weights associated with vertices and edges. 

• three weights on a vertex v: 

– rv: initial data scan cost. 
– fv: query frequency. 
– gv: update frequency. 

• two weights on an edge (v, u) 

– wqu,v: query processing cost of u using v. 
– wmu,v: updating cost of u using v. 

In a general setting, given a query u and a selected materialised view v, a function q(u, v) is the
sum of the query processing costs associated with edges on the shortest path from v to u plus initial
data scan cost of the vertex v, rv. With q(u, v), the raw table will be used instead of v, if and only if the
view v cannot answer the query u. In a similar fashion, m(u, v) is the sum of the maintenance-costs
associated with the edges on the shortest path from v to u. It is important to know that we attempt to
adopt a more general cost model than the linear cost model (Harinarayan et al, 1996) used in most of
the existing work. The linear cost model states that the cost of answering a query, u, using one of its
ancestors, v, is the number of rows present in the table v (rv ). Here, as shown in the two functions q()
and m(), we assume a general query processing cost and maintenance cost model. First, a query
processing cost can be different from a maintenance cost for a pair of vertices. Mumick et al (1997).
proposed a method of maintaining materialised aggregate views, called the summary-delta table
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Figure 1: A simple direct product example
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method, to efficiently maintain a materialised view (Mumick, Quass and Mumick, 1997). The
maintenance costs can possibly be much lower than the query processing costs. Second, we also
assume that query processing cost may involve other query processing costs (associated with edges)
in addition to the initial table scan costs (associated with vertices). For example, given two dimen-
sions, D1 and D2. Assume that the table for D1D2 is sorted on D1. The cost of performing aggregate
D1 using D1D2 is different from the cost of performing aggregate D2 on D1D2 due to sorting order. The
cost differences need to be addressed as weights associated with edges. Third, there are multiple paths
from a view to a query. In our settings, for simplicity, we select the shortest path as its cost.

We adopt the similar notations and definitions used in Gupta and Mumick (1996b) to define the
maintenance-cost view-selection problem. Given an above-mentioned graph G = (E, V) and a set of
queries, Q (⊆V(G)). The maintenance-cost view-selection problem is to select a set of views M
(⊆V(G)) that minimises total query processing, �(G, M), where

under the constraint that the total maintenance cost, U(M), is less than a maintenance cost S, such
as U(M) ≤ S, where U(M) is defined as

Here, q(v, M) denotes the minimum cost of answering a query v (∈V(G)) in the presence of the
set of materialised views, M, and m(v, M) is the minimum cost of maintaining a materialised view
v in the presence of the set of materialised views, M.
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Figure 2: An example

3. MOTIVATIONS
The main idea of the greedy heuristics proposed in Harinarayan et al (1996), Gupta et al (1997),
Gupta (1997) and Liang et al (2001) is to select materialised views, in order of query benefit per
unit space/time consumed, which is given below.

QBPU(v,M) = ∆Qv/∆Tv (1)
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Here, M is a set of selected views, v is a view to be added, ∆Qv = �(G, M) – �(G, M ∪ {v}), and
∆Tv = U(M ∪ {v}) – U(M).

The question is whether it is possible to use such an order for the problem that does not have the
so-called monotonic property. We address the related issues below. Let Cmin be the minimum
maintenance-cost constraint that allows all views to be selected as materialised views. Some
examples are shown in Figure 2 and Figure 3. Here, the root (+) represents the raw table. T, u, q,
uF and qF are, table size (initial data scan cost (rv)), maintenance cost (wmu,v), query processing cost
(wqu,v), update frequency (gv) and query frequency (qv), respectively.

Issue 1: The total maintenance cost may decrease when a new materialised view is selected.
However, a greedy algorithm always selects the greatest query benefit per time constraint.

Consider an example in Figure 2. Initially, v1 has the largest query benefit per unit time consumed.
At the second stage, the greedy heuristic considers all the remaining views, {v0, v2, v3} one by one.
The result is shown in the following table.

It shows that ∆Tv becomes negative when v0 is added to the set of materialised views, M.
However, v3 will be selected because it has the most query benefit per unit time consumed. Due to
the total maintenance cost will go beyond the Cmin, neither v3 nor v2 will be selected. The resulting
set of materialised views is {v1}. But the optimal solution is {v0, v1, v2, v3}.2

The quality of heuristics varies dramatically in different settings. Consider another example in
Figure 3. Table 1, Table 2 and Table 3 show the quality of the four algorithms: inverted-tree greedy,
A*-heuristic, two-phase greedy and integrated greedy in three cases. In these tables, the column of
views gives the resulting set of materialised views found by the algorithm specified in the column
of Algorithm. Q-cost and M-cost are the total query processing cost and total maintenance
cost, respectively, when the set of views have been materialised. These tables show that none of
these four algorithms can always outperform others.

Issue 2: Given a large maintenance-cost constraint, heuristic solutions may not be able to select all
vertices as views.

As can be seen in Table 1, when the maintenance-cost constraint is Cmin, the optimal solution is to
select all views, because the maintenance-cost constraint allows to do so. A*-heuristic and the
integrated greedy are able to materialise all views. But the inverted-tree greedy and the two-phase
greedy cannot achieve the optimal.

Issue 3: A greater query benefit per unit time consumed does not necessarily lead to the minimum
total query processing cost. Two subissues are: (a) selecting a view may make the further view

2 Note: most greedy heuristic algorithms use zero as a lower bound of the query benefit per unit time consumed.
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selections unsuccessful, and (b) not selecting the potential best view at one stage may make it
unable to be selected again.

Table 2 shows an example when the maintenance-cost constraint is 0.96 × Cmin. The integrated
greedy might not achieve the optimal, because a potentially beneficial view might not be selected
again, if it cannot be selected at the stage at which it must be selected. Suppose the set of
materialised views is {v0, v2, v3, v6} (Figure 3). The selection of v1 fails, because the total
maintenance cost will go beyond Cmin, if v1 is selected. The resulting set of materialised views
becomes {v0, v2, v3, v6, v5, v4, v7}. But the optimal solution is {v0, v1, v2, v3} including v1.

Issue 4: A solution provided by A*-heuristic is not always optimal.
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Figure 3: Another example (all update frequences are 0.125)

Table 1: Performance for Figure 3 with constraint = Cmin
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As seen in Table 3, when the maintenance-cost constraint is 0.90 × Cmin, A*-heuristic cannot
provide an optimal solution.

4. EXISTING ALGORITHMS
In this section, in brief, we introduce four algorithms: the inverted-tree greedy (Gupta and Mumick,
1999b), the A*-heuristic (Gupta and Mumick, 1999b), the two-phase greedy (Liang et al, 2001), and
the integrated greedy (Liang et al, 2001). Observations will be given.

Algorithm 1: A*-Heuristics (Gupta and Mumick, 1999b) 

Input: A graph G(V, E) and a maintenance-cost constraint S.
Output: a set of materialised views. 

1. begin 
2. Create a tree TG having just the root A. The label associated with A is 〈�, �〉. 
3. Create a priority queue (heap) L = 〈A〉
4. repeat
5. Remove x from L, where x has the lowest g(x) + h(x) value in L
6. Let the label of x be 〈Nx, Mx〉, where Nx = {v1, v2, …, vd} for some d ≤ n. 
7. if d = n then

8. return Mx

9. end if
10. Add a successor of x, l(x), with a label 〈Nx ∪ {vd+1}, Mx 〉 to the list L. 
11. if (U(Mx) < S) then

12. Add to L a successor of x, r(x), with a label 〈Nx ∪ {vd+1}, Mx ∪ vd+1〉
13. end if
14. until (L is empty); 
15. return ∅ ; 
16. end

Table 2: Performance for Figure 3 with constraint = 0.96 × Cmin

Table 3: Performance for Figure 3 with constraint = 0.9 × Cmin
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4.1 A*-Heuristic
The A*-heuristic is shown in Algorithm 1. The A*-heuristic uses an inverse topological order to
find a set of materialised views. It defines a binary tree TG whose leaf vertices are the candidate
solutions of this problem. At each stage of searching, A*-heuristic evaluates the benefit of
remaining downward branches, and selects the branch of the greatest benefit to go down. A binary
search tree is shown in Figure 4. Each vertex in this binary search tree has a label 〈Nx, Mx〉 (Mx ⊆
Nx), where Mx is the set of views which have been chosen to materialise and considered to answer
the set of queries Nx. The search space is 2| V(G) |, where V(G) is the set of vertices of the graph G.
They estimated the benefit of the downward branches by summing up two functions g(x) and h(x).
g(x) is the total query processing cost of the queries on Nx using the selected views in Mx. h(x) is an
estimated lower bound on h*(x) which is defined as the remaining query cost of an optimal solution
corresponding to some descendant of x in TG (Gupta and Mumick, 1999b).

4.1.1 Discussions
In Table 1 and Table 2, A*-heuristic can reach an optimal solution. However, in Table 3, A*-
heuristic can only reach a near-optimal feasible solution, not the optimal solution. The reason is that
the expected benefit, h(x), is very difficult to estimate accurately. It shows that A*-heuristic delivers
an optimal solution only when h(x) ≤ h*(x). The A*-heuristic may not reach an optimal solution
under some critical maintenance-cost constraint. The A*-heuristic can take exponential time, in the
worst case, with respect to the number of vertices in the graph (Gupta and Mumick, 1999b).

4.2 Inverted-Tree Greedy 
The inverted-tree greedy uses a concept called an inverted tree set. Given a vertex v in a directed
graph, an inverted tree set contains the vertex v and any subset of vertices reachable from v. The
inverted-tree greedy is shown in Algorithm 2, where B(C,M) is the query benefit associated with a
set of vertices C with respect to M as �(T, M) – �(T, M ∪ C), and EU(C, M) is the effective
maintenance-cost of C with respect to M as U(M ∪ C) – U(M). At each stage, this algorithm
considers all inverted tree sets of views, T, in the given graph G, such that T ∩ M = ∅, and selects
the inverted tree set that has the most query-benefit per unit effective maintenance-cost.

({0}, {NULL}) ({0}, {0})

({0, 1}, {0}) ({0, 1}, {0, 1})

({NULL}, {NULL})

({0, 1}, {NULL})

({0, 1, 2}, {1})
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({0, 1, 2}, {1, 2})

({0, 1, 2, 3}, {0})
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({0, 1, 2, 3}, {NULL})
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({0, 1, 2, 3}, {1, 2})({0, 1, 2, 3}, {1}) ({0, 1, 2, 3}, {0, 1, 2})({0, 1, 2, 3}, {0, 1})

Figure 4: The binary search tree Tg of candidate solutions for Figure 2
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Algorithm 2: Inverted-Tree Greedy (Gupta and Mumick, 1999b) 

Input: A graph G(V, E) and a maintenance-cost constraint S.
Output: a set of materialised views. 

1. begin
2. M ← �; BC ← 0;
3. repeat
4. for each inverted-tree set of views T in G such that T ∩ M= � do 
5. if (EU(T, M) ≤ S) and (B(T, M) / EU(T, M) > BC) then
6. BC ← B(T, M) / EU(T, M); C ← T; 
7. end if
8. end for
9. M ← M ∪ C; 

10. until (U(M) ≥ S) ; 
11. return M; 
12. end 

4.2.1 Discussions
The steps for selecting a set of views for the example in Figure 3 is given below. In Table 1, we
assume that the maintenance-cost constraint is the minimum cost that allows all vertices to be
selected as materialised views. In the first step, the algorithm selects v0, because it has the maximum
B(T, M) / EU(T, M). In the following steps, it cannot select any more vertices. The reason is that the
query-benefit per unit effective-maintenance-cost does not increase by adding any new vertices.

Some observations can be made below for the inverted-tree greedy. First, the inverted-tree greedy
does not guarantee a strict maintenance-cost constraint, it satisfies a limit within twice the
maintenance-cost constraint. Second, the total time complexity of a stage of the inverted-tree greedy
is Σv∈v(G)(2Av), where V(G) is the set of vertices of the graph and Av is the number of descendants of
a vertex. In the worst case, it is exponential with respect to |V(G)| as shown in Gupta and Mumick
(1999b). Third, in our extensive experimental studies, we found that the inverted-tree greedy always
chooses the first vertex as a part of its solution. The reason is that the algorithm calculates both the
effective maintenance-cost and the query-benefit per unit effective-maintenance-cost. After selecting
the first vertex, query-benefit per unit effective-maintenance-cost of other vertices is smaller than the
first vertex. Therefore, the algorithm cannot effectively select any other views, simply because the
query-benefit per unit effective-maintenance-cost of the first vertex is the highest in a sense that other
vertices can be derived from it. Finally, by adding a new view into the set of views, the query benefit
will increase. However, the query-benefit per unit effective-maintenance-cost tends to decrease,
which possibly makes the further selection of vertices fail as shown in the examples.

4.3 Two-Phase Greedy 
The two-phase greedy (Laing et al, 2001) is illustrated in Algorithm 3, the basic idea is that it selects
a subset of the materialised views, M1, to minimise the total query processing cost without
considering the maintenance-cost constraint. If the total maintenance cost, U(M1), for all the views
in M1, is less than or equal to the given cost constraint, S, then, all the views in M1 will be
materialised. Otherwise, we need to further find a subset of M1, denoted M2, such that (i) all the
views in M1–M2 can be derived from M1, and (ii) U(M2) ≤ S and the total query processing cost is
minimised. The item (i) guarantees that all the queries can be answered using the views in M1.
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In order to make the query cost function to be consistent when comparing the two-phase greedy
with other algorithms, we revise the linear query cost function in Laing et al (2001) as follows.

The function g(v) for obtaining a gain value for a vertex v takes the following factors into
consideration. First, adding a new vertex v into M2 incurs additional maintenance cost for v.
However, the newly added vertex v is possible to reduce maintenance cost for the vertices that have
already been selected in M2, because those vertices may be able to use the vertex v to reduce the
maintenance cost. Therefore, ∆Tv may be negative. Second, it considers effectiveness of this
selection (vertex v) for all unselected views. It gives a query benefit for selecting this vertex v.
Third, the weight for a vertex v ∈M1 is the sum of query frequencies for all the queries that choose
v as its view. The weight gives a good estimation on the importance of a view v ∈M1, and is different
from the query frequency for v itself.

In the first step, two-phase greedy heuristic do not consider maintenance cost. It reduces the
problem to a minimum weighted maximum cardinality matching problem on a weighted bipartite
graph, which can be solved in polynomial time. An example is shown in Figure 5. The vertex v0 is
possible to answer v1, v2 and v3. The algorithm creates three copies of v0, each of which has an edge
associated with corresponding query vertex it can be used to answer. For every edge (vi, qj), there
is one weight assigned to it. Then, the problem of finding M1 is reduced to a minimum weighted

Algorithm 3: Two-Phase Greedy (Laing et al, 2001)

Input: A graph G(V, E) and a maintenance-cost constraint S.
Output: a set of materialised views. 

1. begin
2. Find a set of materialised views, M1, to minimise the total query processing cost; 
3. if U(M1) ≤ S then
4. return M1; 
5. else
6. Find a subset of M1, denoted as M2, that minimises the total query processing cost and satisfies S. 
7. return M2; 
8. end if 
9. end

0

0

3210"0'

31 2

Views:

Queries:

Figure 5: A bipartite graph example for Figure 2

(2)
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maximum cardinality matching problem on a bipartite graph GB based on G, which can be solved
in polynomial time. Apparently, minimum weighted ensures that the sum of query processing cost
is minimal while maximum cardinality ensures that the cost of all the queries is considered as
optimisation target. In the second step, it further selects a subset of the set of materialised views,
M1, selected in the first step.

To avoid delivering a local optimal solution, Liang et al (2001) also supposed some variants to
improve the performance of two-phase greedy. We call them Minimise-Lost-Benefit variant and
Maximise-Benefit variant. 
• Minimise-Lost-Benefit: At any stage of iteration, when there is no enough remaining

maintenance time to select another materialised view, v, a materialised view u with the minimum
lost benefit in the selected materialised view set is selected as a victim to be replaced with v.
Consequently, it only supports soft constraint. In other words, it allows the maintenance time for
the selected views to be greater than the given constraint.

• Maximise-Benefit: The maximise-benefit is based on a compatible class. Let the view set M′ be
the materialised views which has been found by applying the two-phase greedy. It further
improves the solution by replacing a view v ∈ M′, with a minimum gain benefit, with a view 
u ∉ M′ in the compatible class of v such that (i) u has never been materialised; (ii) the gain benefit
of u is the maximum; (iii) the total view maintenance time is bounded in the maintenance time.

4.3.1 Discussions
The two-phase greedy takes O(m2+mn3/2) time, usually substantially better than the inverted-tree
greedy and A*-heuristic, where m and n are the number of views and queries in the bipartite graph
GB. However, it gives neither quantitative analysis of quality of the solution nor experiment results.
As our running example shows, in Table 1, the maintenance-cost constraint is the minimum cost
constraint that allows all vertices to be selected as materialised view. However, two-phase greedy
delivers an approximate solution instead of a full set of materialised views, it is because during the
minimum weighted maximum cardinality matching, it cannot fully select all the views. In addition,
during the minimum weighted maximum cardinality matching, the view cannot match to itself. For
example, in Figure 5, there is no edge from v0 (a view) to v0 (a query). It is because, if they do so,
then the minimum weighted maximum cardinality matching solver will always select a view to
answer itself, and therefore the resulting M1 is equal to V(G).

4.4 Integrated Greedy
The integrated greedy is summarised in Algorithm 4. The basic idea of the algorithm is given below.
When no views are selected, the total query processing cost for all the queries is very large. Then
the algorithm will reduce the query processing cost by materialising views, one-by-one, as long as
the total maintenance cost is bounded within the cost constraint.

Let M be the set of materialised views having been selected, and U(M) be the total maintenance
cost for the views in M. Recall that �(G, M) is the total query processing cost for answering all the
queries. When considering a view v ∈ V(G) – M to be materialised, the net increase in the
maintenance cost is ∆Tv, = U(M ∪ {v}) – U(M) and the amount of query processing cost reduction
is �(G, M) – �(G,M ∪{v}) by spending ∆Tv unit costs. Thus, each time, it chooses a view v ∉ M to
materialise such that the gain benefit g(v) brought by v is the maximum. The function g(v) is defined
as follows.

(3)
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The gain benefit is similar to that used in the inverted-tree greedy in (Gupta and Mumick (1999b).
In brief, in the integrated greedy (Algorithm 4), it first selects a vertex v0 that gives the

maximum benefit when there is no view being selected. That vertex is the first vertex in the set of
views, M. Next, in each iteration, it selects a vertex that will give the maximum benefit in the
current iteration. Selection of a vertex in an iteration is independent from other selections. The
integrated greedy can reach an optimal solution in Table 1 and 3. However, it only reaches a near-
optimal solution in Table 2. The reason is that it has to give up the greatest gain benefit vertex, v1,
at one stage, i, because the total maintenance cost exceeds the given cost constraint. But, in the later
selections j > i, v1 will never be able to be selected again.

Algorithm 4: A Integrated Greedy Heuristics (Laing et al, 2001)

Input: A graph G(V, E) and a maintenance-cost constraint S.
Output: a set of materialised views.

1. begin
2. M ←�; 
3. Let v0 be the first vertex with maximum g(v0); 
4. M ←{v0}; 
5. �(G,M ← S – U (M)
6. while ∆S > 0 do
7. gain ← 0; 
8. for each v ∈ V(G) – M do
9. g(v) = (�(G,M) – �(G,M ∪ {v}))/ ∆Tv;

10. if g(v) > gain then
11. gain = g(v); vo = v; 
12. end if
13. end for
14. if (∆S – ∆Tvo) > 0 then
15. ∆S = ∆S – ∆Tvo;
16. M ←M ∪{v0}; 
17. end if
18. end while
19. return M; 
20. end

4.4.1 Discussions
The integrated greedy is very similar to inverted-tree greedy. We reexamine the integrated greedy in
comparison with the inverted-tree greedy by considering the following two issues: (a) the inverted-
tree greedy needs to consider every inverted tree sets, and (b) the inverted-tree greedy requires the
query-benefit per unit effective-maintenance-cost for the newly selected views to be greater than the
previously selected view set. The item (a) makes the time complexity of the inverted-tree greedy to
be exponential in the number of vertices, in the worst case. As for the item (b), because the query-
benefit per unit effective-maintenance-costs tends to decrease when more vertices are added into the
view set, the inverted-tree greedy is difficult to select more vertices. Instead, the integrated greedy
uses the query-benefit per unit maintenance-costs. It attempts to add a vertex that will give the
maximum gain into the view set. So it is weaker than the above item (b). Besides, the integrated
greedy selects views one-by-one, which will significantly reduce the view-selection time.
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5. A PERFORMANCE STUDY
We present some results of our extensive performance study in this section. All the algorithms were
implemented using gcc. We use the maximum-weight matching solver implemented by Ed Rotherg
who implemented H. Gabow's N-cube weighted matching algorithm (Gabon, 1973). We use it to
find the minimum weighted matching by replacing a cost, c, on an edge with cmax – c, where cmax is
a maximum value for all costs. All the algorithms used the same function, q(v, M), to compute query
processing cost and the same function, m(v, M), to compute maintenance cost.

For a small dependence lattice (up to 16 elements), we compare five different algorithms: the
optimal, the inverted-tree greedy, the A*-heuristic, the two-phase greedy, and the integrated greedy.
We also report the scalability of the two algorithms, the two-phase greedy and the integrated greedy,
using a large dependence lattice (up to 256 elements). These experiments were done on a Sun
Blade/1000 workstation with a 750MHz UltraSPARC-III CPU running Solaris 2.8. The workstation
has a total physical memory of 512M. The notations and definitions, together with the default
values, for all the parameters are summarized in Table 4.

Given a dependent lattice (L, ) of size N, we construct a directed acyclic graph G(V, E). A
vertex, v, has three weights, Rv, its update frequency and query frequency. An edge, from v to u, has
two weights: Q(u,v) and U(u,v). We assign these weights to the graph G(V, E) as follows. First, we
randomly generate N distinctive table sizes (Rv). The N table sizes are randomly picked up and
assigned to the vertices on a condition that the table sizes of ancestors of a vertex are greater than
that of the vertex. We assume that query frequencies follow a Zipf distribution.We also assume that
all vertices have the same relative update frequencies such that all materialised views need to be
updated when the raw table is updated. Query frequencies are randomly assigned to all vertices.
Given an edge from v to u, (v, u), we assume that the maintenance cost of u using v is smaller than
the query processing cost of u using v. We also assume that maintenance cost is more related to the
table size of u. In this set of tests we reported in this paper, Q(v, u) is a number smaller than the table
size of v, (Rv). U(v, u) is about one 10-th of the table size u, (Ru). It is important to know that the cost
function q(v,u) (m(v, u)) considers both table sizes and query processing costs (maintenance costs),
associated with edges.

In order to compare the performance of the inverted-tree greedy, A*-heuristic, two-phase greedy
and integrated greedy, we implemented an algorithm for finding the optimal solution. To find the
optimal set of materialised views to precompute, we enumerate all possible combinations of views,
and find a set of views by which the query processing cost is minimised. Its complexity is O(2N).

We abbreviate the optimal algorithm as O, the inverted-tree greedy as V, A*-heuristic as A, two-
phase greedy as T and integrated greedy as I in the following figures.

Table 4: System parameters 
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Exp-1: The impacts of query frequencies 
First, we investigate the impacts of query frequencies. Query frequencies follow a Zipf distribution.
In Figure 6, the number of vertices is 16, and the maintenance-cost constraint is 0.8 × Cmin, where
Cmin is the minimum maintenance-cost constraint for all vertices to be selected as views. We vary
query frequencies by increasing the Zipf factor from 0.1 to 1.0. We assign the high query
frequencies to the vertices in three ways: (i) high level (close to the top), (ii) middle level, and 
(iii) low level, which are shown in Figure 6(a), (b) and (c), respectively. The assignment of high
query frequencies in the graph will affect the set of views to be materialised. In this testing, the A*-
heuristic and integrated greedy reach an optimal solution in all cases. 

• The high query frequencies are assigned to the vertices at the high level (close to top) (Figure
6(a)): The increase of query processing cost for the four algorithms is due to the fact that the
high level vertices have large query cost. In contrast, the query processing cost for the inverted-
tree greedy decreases. It is because that it always attempts to select high level vertices, and they
are frequently retrieved. 

• The high query frequencies are assigned to the vertices at the low level (Figure 6(c)): The query
processing cost for all algorithms is opposite to Figure 6(a).

• The high query frequencies are assigned to the vertices at the middle level (Figure 6(b)): The
decrease of query processing cost for the three algorithms is due to the fact that the middle level
vertices have lower query cost and high query frequencies. The query processing cost for the
two-phase greedy and inverted-tree greedy increases, because the query frequencies of the high
level vertices increase. 

Figure 6(d) illustrates the relationship between view selection time and Zipf factor. We found
that the five algorithms spend longer time while the high query frequencies are assigned to the
vertices at the middle level. All algorithms spend the same amount of time on both high and low
cases except for the A*-heuristic. It is because that, at each search stage, A*-heuristic needs to
calculate the g(x) and h(x) of downward branches. When the high query frequencies are assigned at
the top level, it is faster for A*-heuristic to reach the leaf vertices as the difference of query cost
between vertices is large. However, at the middle level, the difference of query cost at each vertex
becomes small, the A*-heuristic needs longer time to search other branches. Compared with the top
case, A*-heuristic spends more time in the low level case. The other algorithms, the integrated
greedy and two-step greedy take nearly constant time.

Exp-2: The impact of the maintenance-cost constraint
In this testing, we investigate the performance of the four algorithms by varying the maintenance-
cost constraint. The number of vertices is 16 and the Zipf factor is 0.2. The high query frequencies
are assigned at the high level. The minimum maintenance-cost constraint, denoted Cmin, allows all
vertices to be selected as materialised views.

The results are shown in Figure 7(a), (b) and (c), where the maintenance-cost constraint used is
p × Cmin where p varies from 0.7 to 1.0. (Note: when p < 0.7, none of the algorithms can select any
views.) A larger p implies that it is likely to select more views. When p = 1, it means that all vertices
are possibly selected. In Figure 7(a) and (b), the optimal is chosen as the denominator to compare.
We did not include the inverted-tree greedy (V) in these figures, because that makes the other
differences less legible. For reference, the maintenance costs for the inverted-tree greedy are, as
pairs of (p, maintenance-cost), (0.70, 1), (0.80, 0.88), (0.90, 0.77) and (1.0, 0.69). The query
processing costs for the inverted-tree greedy are, as pairs of (p, query-processing-cost), (0.70, 1),
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(0.80, 1.99), (0.90, 6.42), (1.0, 11.25). The inverted-tree greedy is inferior to all others. The query
processing cost is the reciprocal of the maintenance-cost (Figure 7(a) v.s. Figure 7(b)).

We found, in our performance study, that the maintenance-cost constraint is the most critical
factor that affects the quality of the heuristic algorithms. Some observations are given below.

(a) Maintenance cost v.s. cost constraint (0.7–1)
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Figure 7: The impacts of the maintenance-cost constraint
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• Issue 1: As Figure 7(a) and (b) suggested, in a multidimensional data warehouse environment,
Issue 1 has less impacts on greedy algorithms. We explain it below. When selecting a view v,
the total maintenance cost, U(M∪{v}), depends on two factors: update cost, m(v, M), and update
frequency of the vertex v, gv. Recall m(u, v) is the sum of the maintenance-costs associated with
the edges on the shortest path from v to u, so the total maintenance cost will be greater than zero,
when a new vertex is added. On the other hand, since u is derived from v, the update frequency
of v should be greater than or equal to u’s update frequency in a multidimensional data ware-
house environment. As a result, ∆Tv > 0. Therefore, Issue 1 is not a real issue in a
multidimensional environment.

• Issue 2: The two-step greedy and the inverted-tree greedy cannot select all views to materialise,
even though the maintenance-cost constraint allows it. Two-step greedy only gives an approxi-
mate solution.

• Issue 3: The greedy algorithms become unstable when the maintenance-cost constraint is over
0.9 × Cmin. The integrated greedy is impossible to select proper views. The reasons are given in
Section 3.

• Issue 4: The A*-heuristic cannot always find optimal solutions, in particular, when it is over 0.9
× Cmin. For instance, when p = 0.95, A*-heuristic selected {v0, v1, v2, v3, v5, v6, v7, v8, v9, v12} of
a 16 vertex graph. Its maintenance-cost is 27.25, and its query processing cost is 93.18. But, the
optimal solution included {v0, v1, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13, v14, v15}. The
maintenance-cost and query processing cost for the optimal solution are, 26.75 and 75.54,
respectively. It is because A*-heuristic estimates the expected benefit, h(x), which might not be
accurate. It points out a very important fact for a greedy algorithm, if it misses selecting a vertex,
(v2 in this case), it will affect the other selections.

Figure 7(c) shows that the view selection time for the five algorithms. Because the number of
vertices is fixed (N = 16 ), all the view selection time for all the cases are the same. The inverted-
tree greedy consumes more view selection time than the optimal (the middle). It is because that, for
computing the optimal solution, we only check all 216 subsets once. Recall that the inverted-tree
greedy needs to check the maximum query-benefit per unit effective-maintenance-costs at every
stage, and check powersets repeatedly. All the other three algorithms: the A*-heuristic, the
integrated greedy and the two-step greedy can be efficiently processed.

Exp-3: Two-Phase and its Variants
Figure 8(a) and (b) show the comparison amongst the two-phase greedy (T) and its variants,
minimise-benefit-lost (L) and maximise-benefit (C). The minimise-benefit-lost variant reaches a
better solution by releasing a certain amount of maintenance time. In other words, it does not
support hard constraint and allows the maintenance time of the selected views to be greater than the
given constraint. Because, in the paper, we mainly studied the maintenance-time view-selection
under the hard constraint, we do not compare it with other greedy algorithms further. The maximise-
benefit variant can only improve the two-phase greedy marginally. It is important to note that both
variants cannot select a full set of materialised view even the maintenance cost allow them to do so.

Exp-4: Scalability
In this experimental study, we fixed all the parameters except for the number of vertices. We show
two sets of results. Figures9(a), (b) and (c) show a comparison of the five algorithms: the optimal,
the integrated greedy, the two-phase greedy, the inverted-tree greedy and the A*-heuristic by
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varying the number of vertices, N, from 4 to 16. The maintenance-cost constraint, Cmin, is the
minimum maintenance-cost constraint that allows all vertices to be selected. In Figure 9(d), (e) and
(f), we compare the integrated greedy with the two-phase greedy by varying the number of vertices,
N, from 4 to 256. The maintenance-cost constraint is 0.8 × Cmin.

Figure9(b) shows the query processing costs. Due to the number of views to be selected, as
shown in the previous testings, the A*-heuristic and integrated greedy always give an optimal
solution. The two-phase greedy gives a feasible and good approximation. The A*-heuristic,
integrated greedy and two-step greedy outperform the inverted-tree greedy significantly. Figure 9(c)
shows the view-selection time of these algorithms. The optimal algorithm is exponential to the
number of N. The inverted-tree greedy is also exponential to N, and takes longer time than the
optimal. The A*-heuristic is exponential to N in the worst case. When the number of vertices is over
120, the view selection time for the integrated greedy increases exponentially. On the other hand,
the view selection time for the two-phase greedy is small. In addition, the query processing time for
the two-phase greedy is acceptable when the number of vertices is large. In conclusion, when N ≤
120, the integrated greedy is recommended to use. When N > 120, the two-step greedy is a
reasonable choice in practice.

6. CONCLUSION
The selection of views to materialise is one of the most important issues in designing a data warehouse.
We reexamine the maintenance-cost view-selection problem under a general cost model. Heuristic
algorithms can provide optimal or near optimal solutions in a multidimensional data warehouse
environment under certain conditions: the update cost and update frequency of any ancestor of a vertex
is greater than or equal to the update cost and update frequency of the vertex, respectively.
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In our extensive performance studies, the A*-heuristic, integrated greedy and two-step greedy
significantly outperformed the inverted-tree greedy. The greedy algorithms are not stable when the
maintenance-cost constraint is over 90% of the minimum maintenance-cost constraint that allows
all views to be selected.

The two-phase greedy and the integrated greedy are scalable. When the number of vertices in a
graph is less than or equal to 120, the integrated greedy can compute fast and give an optimal



Selecting Views with Maintenance Cost Constraints: Issues, Heuristics and Performance

Journal of Research and Practice in Information Technology, Vol. 36, No. 2, May 2004 109

solution. When the number of vertices is greater than 120, the two-phase greedy is recommended
to use due to the efficiency. The two-phase greedy gives a good approximate solution, which is close
to the optimal solution, in our testing for a small number of vertices (16).

As our future work, we plan to study the view-selection issues using real large databases.
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