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Abstract 

The effect of artificial diffusion schemes on 
the convergence of an implicit method is investi- 
gated. A multigrid code using a symmetric lim- 
ited positive scheme in conjunction with a lower- 
upper symmetric-Gauss-Seidel method is developed 
for viscous compressible flows. The present numer- 
ical method is shown to be an effective multigrid 
driver in three-dimensions. Despite its reasonably 
fast convergence, the present code requires low com- 
putational work per iteration. The symmetric lim- 
ited positive scheme improves the convergence char- 
acteristics of the implicit method on a high cell as- 
pect ratio grid. The numerical results compare well 
with available experimental data. 

I. Introduction 

It has been known that non-oscillatory finite 
volume schemes can be constructed through the in- 
troduction of artificial diffusion which produces an 
upwind bias. One approach to the construction 
of high resolution schemes which combine mono- 
tonicity and high order accuracy is to blend low 
and high order diffusive terms as in the Jameson- 
Schmidt-Turkel (JST) scheme.' Another approach 
to the construction of high order schemes is to add 
limited anti-diffusive terms to a low order scheme. 
An example is a family of symmetric limited positive 
(SLIP)  scheme^.^^^ 

Multigrid methods have been useful for accel- 
erating the convergence of iterative schemes. Jame- 
son's method4 in conjunction with the explicit 
Runge-Kutta scheme has been particularly efficient 
for the Euler equations. The explicit multigrid 
method has demonstrated impressive convergence 
rates by taking large time steps and propagating 
waves fast on coarse meshes. It does not seem to be 

profitable to consider an unfactored implicit scheme 
for a multigrid driver since the implicit scheme 
can take large time steps which are limited by the 
physics rather than the grid. However, the multi- 
grid method cam improve the convergence rates of 
factored implicit  scheme^.^!^ 

Although conventional implicit methods of- 
ten achieve fast convergence rates, they suffer from 
greater computer time per iteration than explicit 
methods. Yoon and ~ a m e s o n ~  has introdu&d an im- 
plicit algorithm based on a lower-upper(LU) factor- 
ization, symmetric Gauss-Seidel(SGS) relaxation, 
and Newton-like iteration. The scheme has been 
used successfully in computing chemically reacting 
flows due in part to the algorithm's property which 
reduces the size of the left hand side matrix for 
nonequilibrium flows with finite rate chemistry. It 
has been demonstrated by Yoon and ~ w a k ~ - ' O  that 
the LU-SGS scheme requires less CPU time per it- 
eration than most existing time-marching methods 
on Cray supercomputers. However, it has been 
observed that the convergence rate of the multi- 
grid LU-SGS method in conjunction with the JST 
scheme slows down significantly after the residual 
drops about four orders of magnitude on highly clus- 
tered grids. One of the objectives of the present 
work is to study the effect of artificial diffusion 
schemes on the terminal convergence characteristics 
of the LU-SGS method. 

11. Governing Equations 

Let t be time; p,  p ,  and T the density, pressure, 
and temperature; u ,  v ,  and w the velocjty compo- 
nents in Cartesian coordinates (x ,  y, z ) ;  Q the vector 

A A A 

of conserved variayes; _E, F, an? G the convective 
flux vectors; and Ev, F,, and G, the flux vectors 

* Research Scientist, Advanced Computational Methods Branch 
t Visiting Scientist, Professor, Princeton University 
$ Chief, Advanced Computational Methods Branch 



for the viscous terms. Then the three-dimensional 
Navier-Stokes equations in generalized curvilinear 
coordinates (t, 71, (') can be written as 

where hj++ is an estimate of the numerical flux be- 
Q ) +  ( )  = ( )  tween cells j and j + 1. Since the arithmetic average 

of the flux leads to a scheme that does not satisfy 
The equation of state is needed to complete the set the positivity conditions, a diffusive flux d is added 

of equations for compressible flow. to the convective flux in a conservative manner. 

where 
where y is the ratio of specific heats. 

111. Artificial Diffusion 

A semidiscrete finite volume method is used 
to ensure the final converged solution be indepen- The LED condition is satisfied if 
dent of the time step and to avoid metric singularity 
problems. The finite volume method is augmented 
by artificial diffusion terms in order to suppress the 
tendency for odd and even point decoupling. Ar- 
tificial diffusion terms are often called filters since 
they work like low pass filters which damp out high 

where the wave speed a ( v )  = g. The least diffusive 
frequency modes. 

first order scheme which satisfies the LED condition 
Consider the one-dimensional conservation law can be obtained by taking 

for a scalar dependent variable v. If Eq. ( 3 )  is 
represented by a three-point scheme 

the scheme is local extremum diminish 

+ cj++ > 0, c;-, 2 0. 

Eq. (3) can be approximated by a conservative 
semidiscrete scheme 

This is known as the first order upwind scheme. 

Higher order non-oscillatory schemes can be 
derived by introducing anti-diffusive terms in a 
controlled manner. An early attempt is the JST 
scheme. 

(2)  dj++ ='. ,+;Avj++ 

For a system of multidimensional equations the coef- 
ficients of the dissipative terms are the directionally 



scaled spectral radii of the Jacobian matrices for in- 
viscid flux vectors. Third order terms formed from 
fourth differences provide the background damping. 
First order terms are added by second differences 
near shock waves under the control of a sensor, fi. 

where 

T vi = m a x ( u ~ ,  vi ) (13) 

vp = I  P ~ + I  - 2pi +pi-' I /(pi+'+ 2pi +pi-l) (14a) 

v,T =( TI+' -2TI+Ti-1 I /(%+I +257+T,-1) (146) 

Here p and T are the pressure and the temperature. 
The low order dissipative coefficient is proportional 
to the sensor fi as 

h 

r(2) i+ + = K ( ~ ) ~ ( A ) ~ +  + ci++ (15) 

where r ( 2 )  denotes the spectral radius of the Jaco- 

bian matrix Â . The high order dissipative coefficient 
is controlled by the sensor. 

Here d2) and d4) are constants. 

Since the constant total enthalpy is not pre- 
served in general except for the Euler equations, the 
dissipation for the energy equation is based on the 
total energy rather than the total enthalpy. It has 
been shown that the convergence rate on high cell 
aspect ratio meshes can be enhanced by multiplying 
a scaling factor based on local cell aspect ratio to the 
dissipative coefficients. However, this technique has 
not been used here because the aspect ratio based 
scaling factor seems to compromise the accuracy of 
the solution." 

An alternative route is to introduce flux lim- 
iters. A simple way to introduce limiters is to use 
flux limited dissipation. Let L(u, v) be a limited 
average of u and v with the following properties: 

P2. L(au ,  av )  = aL(u ,  v) 

P3. L(u, u) = u 

P4. L(u, v) = 0 if u and v have opposite signs. 

Properties (PI-P3) are natural properties of an av- 
erage. Property P4 is needed for the construction 
of an LED scheme. 

The diffusive flux for a scalar conservation law 
is defined as 

and 

$(r) = L(1, r )  = L(r, 1)-  

Then the scheme satisfies the LED condition if 
1 

aj++ > 1 aj++ 1 for all j, and 4( r )  > 0, which 
is assured by property P4 on L. At the same time 
it follows from property P3 that the first order dif- 
fusive flux is canceled when Av is smoothly varying 
and of constant sign. Schemes constructed by this 
formulation are referred to as the symmetric limited 
positive (SLIP) schemes2. 

A variety of limiters may be defined which 
meet the requirements of properties PI-P4. Define 

so that 

1 if u > O a n d v > O  

0 if u and v have opposite signs 

-1 if u <  0 and v < 0 I 



Three limiters which are appropriate are the follow- 
ing well-known schemes. 

1. Minmod: 

3. Superbee: 

L(u, v) = S(u,  v)max{min(2 I u 1 ,  I v I), 

min(l 1 7  2 1 1)) 

These limiters are unnecessarily stringent. Super- 
bee, for example, could be relaxed to a-bee. 

4. a-bee: 

L(u, v) = S(u,  v)max{min(a I u 1 ,  I v I), 

This limiter reduces to minmod when a=l, and less 
stringent than Superbee when a > 2. Superbee dif- 
fers from the other limiters in that it introduces a 
larger amount of antidiffusion than that needed to 
cancel the diffusion. Thus it tends to produce arti- 
ficial compression of discontinuities. A generalized 
limiter contains the first two limiters. 

5. Jameson: 

where D(u,  v) is a factor which should deflate the 
arithmetic average, and becomes zero if u and v have 
opposite signs. 

where k is a positive integer. Then D(u, v) = 0 if 
u and v have opposite signs. Also if k = 1, L(u, v) 
reduces to minmod, while if k = 2, L(u, v) is equiv- 
alent to Van Leer's limiter. By increasing k one can 
generate a sequence of limited averages which ap- 
proach a limit set by the arithmetic mean truncated 
to zero when u and v have opposite signs. 

IV. Multigrid Method 
- 

In the present multigrid method, part of the 
task of tracking the evolution of the solution is 
transferred through a sequence of successively coarser 
meshes. The use of larger control volumes on the 
coarser meshes tracks the large scale evolution, with 
the consequence that global equilibriumkcan be more 
rapidly attained. This evolution on the coarse grid 
is driven by the solution of the fine grid equations. 
The solution vector on a coarse grid is initialized as 

where the subscripts denote values of the mesh spac- 
ing parameter h ,  S is the cell volume, and the sum 
is over the eight cells of the fine grid which compose 
each cell of the coarse grid. After updating the fine 
grid solution, the values of the conserved variables 
are transferred to the coarse grid using Eq. (27). 
The pressure is calculated on the coarse grid using 
the transferred variables. Then a forcing function is 
defined as 

where R is the residual. 

The residual on the coarse grid is given by 

For the next coarser grid, the residual is calculated 
as 



where 

and I is_the identity matrix. 6~ is the correction 
Q"+' - Qn,  where n denotes the time level. DF,  

(30) D,, and D( are difference operators that approxi- 
A n  

mate at, a,, and a(. A, B, and e are the Jacobian 
matrices of the convective flux vectors. 

The process is repeated on successively coarser 
grids. Multiple iterations can be done on each 
coarse grid. Artificial diffusion terms for the coarse 
grids are formed from second differences with con- 
stant coefficients. Finally, the correction calculated 
on each grid is interpolated back to the next finer 
grid. Let Q Z h  be the final value of Qzh resulting 
from both the correction calculated on grid 2h and 
the correction transferred from the grid 4h. Then 

where Qh is the solution on grid h before the trans- 
fer to the grid 2h, and I is a trilinear interpolation 
operator. 

V. LU-SGS Im~licit Scheme 

The governing equations are integrated in time 
for both steady and unsteady flow calculations. For 
a steady-state solution, the use of a large time step 
leads to fast convergence. For a time-accurate solu- 
tion, it is desirable that the time step is determined 
by the physics rather than the numerics. An unfac- 
tored implicit scheme can be obtained frqm a non- 
linear implicit scheme by linearizing the flux vectors 
about the previous time step and dropping terms of 
the second and higher order. 

where k is the residual 

For a = $, the scheme is second order accurate 
in time. For other values of a ,  the time accuracy 
drops to  first-order. Although the direct inversion 
method seems to be competitive with approximate 
factorization methods in the overall computing time 
in two-dimensions, direct inversion of a large block 
banded matrix of the unfactored scheme Eq. (33) 
appears to be impractical in three-dimensions be- 
cause of the rapid increase of the numeer of oper- 
ations as the number of mesh points increases and 
because of the large memory requirement. 

To alleviate this difficulty, Yoon and ~ a m e s o n ~  
derived an efficient implicit algorithm by combining 
the advantages of LU factorization, SGS relaxation, 
and Newton iteration. The LU-SGS scheme can be 
written as 

where 

(37) 

where D;, D;, and D r  are backward difference 

operators, while D l ,  D:, and D: are forward dif- 
ference operators. 

In the framework of the LU-SGS algorithm, a vari- 
ety of schemes can be developed by different choices 



of numerical dissipation models and Jacobian matri- 
ces of the flux vectors. The matrix should be diag- 
onally dominant to ensure convergence to a steady 
state. Jacobian matrices leading to diagonal domi- 
nance are constructed so that (' + " matrices have 
nonnegative eigenvalues while "-" matrices have 
nonposi tive eigenvalues. For example, 

A 

where typically ?< and T;' are similarity transfor- 
A 

mation matrices of the eigenvectors of A. Another 
possibility is to construct Jacobian matrices of the 
flux vectors approximately to yield diagonal domi- 
nance. 

where 

A 

Here X(A) represent eigenvalues of the Jacobian ma- 
h 

trix A and k is a constant that is greater than or 
equal to 1. A typical value of k is 1. However, stabil- 
ity and convergence can be controlled by adjusting 
K: as the flowfield develops. The diagonal matrix of 

A(2) = 

and 

eigenvalues is 

U O O  0  0  
O U O  0  0  
O O U  0  0  
0  0  0  u+c ,  0  
0 0 0  0  u - c ,  

C< = c& + t; + fIZ 
where c is the speed of sound: 

Eq. (36) can be inverted in three steps: 

It is interesting to note that the need for block 
inversions along the diagonals can be eliminated if 
we use the approximate Jacobian matrices of Eq. 
(39). Setting o = 1 and A t  = co yields a Newton- 
like iteration. Although a quadratic convergence 
of the Newton method cannot be achieved because 
of the appyoximate factorization, a linear conver- 
gence can be demonstrated. That is why the term 
Newton-like instead of Newton is used to distinguish 
the differences. The use of Newton-like iteration of- 
fers a practical advantage that one does not have 
to waste time to find an optimal Cqurant number 
or time step. If two-point one-sided 'differences are 
used, Eq. (37) reduces to 

where 

A 

In the inversion process, A , + _ , , ~ , ~  is multiplied by 
A 

6Qf-l,j,k, for example. The algorithm permits 
scalar diagonal inversions since u is scalar. 

VI. Vectorization 

The algorithm is completely vectorizable on 
i + j + k = constant diagonal planes of sweep. This 
is achieved by reordering the arrays. 

h 

~ ( i p o i n t  , iplane) = ~ ( i ,  j ,  6 )  (47) 

where iplane is the serial number of the diagonal 
plane, and ipoint is the address on that plane. Let 



imax, jmax,  and kmax be maximum number of grid 
points a t  each coordinate direction. Then the num- 
ber of diagonal planes for cell-centers is given by 

nplane = imax + jmax + kmax - 5 

with the maximum vector length of 

npoint = ( jmax  - 1) * (kmax - 1) 

when 

imax = max(imax, jmax,  kmax) 

VII. Results 

In order to investigate the effect of artificial 
diffusion schemes on the convergence, transonic flow 
calculations have been carried out for an ONERA 
M6 wing. A 193 x 49 x 33 C - 0  grid (312,081 points) 
with high cell aspect ratios is used. Here 49 grid 
points are used in the normal direction. The dis- 
tance of the first normal grid point from the wing 
surface is 1.3 x times the chord length. Fig. 1 
shows the distribution of geometric cell aspect ra- 
tios of the first normal mesh cells at  the body from 
the leading edge to the downstream boundary. The 
cell aspect ratios on the wing reach as high as 1,000. 

Test cases include both attached and sepa- 
rated flow conditions. The freestream 5onditions 
for the attached flow are are a t  a Mach number of 
0.8395, and a 3.06' angle of attack. Since this is 
an unseparated flow case, the solution of the Euler 
equations is first considered. Fig. 2 shows single 
grid convergence histories of the root-mean-squared 
residuals which correspond to the density correc- 
tions. The residuals are normalized by their initial 
values. Convergence histories of two different arti- 
ficial diffusion schemes are compared. The dashed 
line indicates the JST scheme while the solid line 
indicates the SLIP scheme. Aspect ratio based scal- 
ing factors have not been used for the JST scheme. 
According to the authors' experience, the conver- 
gence rates of the LU-SGS scherne on C - 0  grids are 

about twice slower than those on C-H grids. Never- 
theless, residuals of both artificial diffusion schemes 
drop four and half orders of magnitude at the ap- 
proximately same rates. However, the JST scheme's 
residual stops converging at  five orders of magnitude 
while the SLIP scheme's residual drops nearly seven 
orders of magnitude. Single grid lift convergence 
histories in Fig. 3 indicate that the JST scheme 
fails to reach to a steady state in this case. 

Fig. 4 shows multigrid convergence histories 
using a four-level V-cycle with two iterations on 
each coarse grid. The convergence rate of the JST 
scheme slows down significantly after the residual 
drops about four orders of magnitude. The resid- 
ual of the S H P  scheme drops nearly seven orders of 
magnitude. Multigrid lift convergence histories in 
Fig. 5 show that the SLIP scheme reaches a steady 
state earlier than the JST scheme. 

Convergence histories of the SLIP scheme on 
both single and multiple grids are corndared in Figs. 
6 and 7. The dashed line indicates the single grid 
while the solid line indicates the multigrid. Fig. 
6 shows that four orders of residual drop requires 
1,680 and 220 iterations, while six orders of residual 
drop requires 7,860 and 1,180 iterations for single 
and multigrid respectively. The convergence based 
on residuals has been accelerated by a factor of 7 
in terms of iterations by the use of the multigrid 
method. Fig. 7 shows that the lift coefficients reach 
within the 0.5% of the final value in 5,960 and 260 
iterations for single and multigrid respectively. The 
convergence based on lift coefficients has been ac- 
celerated by a factor of 23 in terms of iterations by 
the use of the multigrid method. However, a multi- 
grid cycle requires more time per iteration than a 
single grid cycle not only because of additional op- 
erations for transfer and interpolation but because 
of the short vector lengths on the coarse grids. The 
overhead for the multigrid cycle in this case is ap- 
proximately 80%. Thus the net acceleration factors 
are approximately 4 for residuals and 13 for lift co- 
efficients. 

Fig. 8 shows pressure coefficients a t  the 44% 
semi-span station for both experimental data12 and 
the Euler solutions. The SLIP scheme appears to be 
able to capture nonoscillatory shocks with a sharper 
resolution than the JST scheme. The Navier-Stokes 
solutions are obtained using the SLIP scheme. The 
Baldwin-Lomax algebraic turbulence model is used 



for closure. The Reynolds number based on the 
chord length at the root is 1.5 x lo7. A compar- 
ison of pressure coefficients at  the 65% semi-span 
station in Fig. 9 shows that the Navier-Stokes so- 
lution is closer to the experimental data than the 
Euler solution even for the attached flow. 

The freestream conditions for the separated 
flow are are a t  a Mach number of 0.8447, and a 5.06' 
angle of attack. Fig. 10 shows the streaklines on the 
wing surface calculated using the SLIP scheme with 
the Balwin-Lomax turbulence model. Fig. 11 shows 
that the lift coefficients converge within the 0.5% of 
the final value in 200 iterations. Fig. 12 shows that 
residuals drop about four and a half orders of magni- 
tude in 200 iterations. The present multigrid code 
with two coarse grid corrections requires 11 p e c  

per point per iteration on a Cray C90 single proces- 
sor for the thin-layer Navier-Stokes equations using 
the Baldwin-Lomax turbulence model and the SLIP 
scheme. Thus approximately 11 min of CPU time 
are required for convergence for this case. 

Conclusions 

The symmetric limited positive scheme not 
only produces solutions with higher accuracy than 
the conventional artificial diffusion model but im- 
proves the robustness and the terminal convergence 
of a multigrid method which uses an implicit scheme 
as its driver. 
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