
Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 2006 19

Analysing the Woo-Lam Protocol Using CSP
and Rank Functions
Siraj Shaikh and Vicky Bush
Department of Computing,
University of Gloucestershire Business School,
Park Campus, Cheltenham Spa, GL52 2RH, UK
{sshaikh,vbush}@glos.ac.uk

Designing security protocols is a challenging and deceptive exercise. Even small protocols
providing straightforward security goals, such as authentication, have been hard to design
correctly, leading to the presence of many subtle attacks. Over the years various formal
approaches have emerged to analyse security protocols making use of different formalisms.
Schneider has developed a formal approach to modelling security protocols using the process
algebra CSP (Communicating Sequential Processes). He introduces the notion of rank functions to
analyse the protocols. We demonstrate an application of this approach to the Woo-Lam protocol.
We describe the protocol in detail along with an established attack on its goals. We then describe
Schneider’s rank function theorem and use it to analyse the protocol.

ACM Classification: C.2.2 (Communication/Networking and Information Technology –
Network Protocols – Protocol Verification), D.2.4 (Software Engineering – Software/Program
Verification – Formal Methods), D.4.6 (Operating Systems – Security and Privacy Protection –
Authentication)

Manuscript received: 12 April 2005
Communicating Editor: Julio Cesar Hernandez

Copyright© 2006, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

1. INTRODUCTION
Over the years various formal approaches have emerged to analyse security protocols (Ryan et al,
2001), making use of different formalisms including logic (Gong et al, 1990; Syverson and van
Oorschot, 1994) strand spaces (Thayer Fábrega, 1998), type theory (Gordon and Jeffrey, 2001),
model-checking (Lowe, 1996; Mitchell et al, 1997) and some hybrid techniques (Meadows, 1996).
A common principle in this research is the assumption of ‘perfect encryption’ that allows
cryptography to be treated as a black-box and therefore flawless; this is formalised by Dolev and
Yao (1983). Schneider (1996) has developed a formal approach to modelling security protocols
using the process algebra CSP (Hoare, 1985). Schneider (1998) then introduces the notion of rank
functions to analyse the protocols.

The purpose of this paper is to demonstrate an application of this approach to the Woo-Lam
protocol (Woo and Lam, 1992). It is an authentication protocol with a history of established attacks.
We describe the Woo-Lam protocol in Section 2, along with an attack in Section 2.1. We then
describe Schneider’s CSP approach and model the Woo-Lam protocol in CSP in Section 3. We
introduce the rank function approach in relevant detail and apply the approach to the Woo-Lam
protocol in Section 4. We discuss our experiences of this effort to conclude the paper in Section 5.

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 200620

2. WOO-LAM PROTOCOL
Woo and Lam (1992) introduce a protocol that provides one-way authentication of the initiator of
the protocol, A, to a responder, B. The protocol uses symmetric-key cryptography and a trusted
third-party server, with whom A and B share long-term symmetric keys.

(1) A → B : A
(2) B → A : NB

(3) A → B : {NB}KAS

(4) B → S : {A,{NB}KAS}KBS

(5) S → B : {NB}KBS

Figure 1: Woo-Lam protocol

The protocol is shown in Figure 1 above where {m}k represents message m encrypted under key
k and “,” represents the concatenation operator. The keys KAS and KBS represent the long-term keys
that A and B share with the trusted server S. The protocol goal is to authenticate A to B by using a
fresh and unpredictable nonce, NB, produced by B.

A starts the protocol by sending its identity to B. B replies by sending a freshly generated nonce
NB. A encrypts NB with key KAS and sends it back to B. B concatenates A’s reply with the identity of
A, encrypts it with key KBS and sends it to the server S. S sends out NB back to B encrypted under KBS.
B compares the nonce it receives from S with the one it sent out to A. If they match, then B is guaran-
teed that the initiator of the protocol is in fact the principal claimed in the first step of the protocol.

2.1 An attack on the Woo-Lam protocol
The Woo-Lam protocol has been to shown to be susceptible to a few attacks (Woo and Lam, 1994),
one of which is shown in Figure 2 below.

(1.1) I(A) → B : A
(1.2) B → I(A) : NB

(1.3) I(A) → B : X
(2.1) I → B : I
(2.2) B → I : NB�
(2.3) I → B : {NB}KIS

(1.4) B → S : {A,X}KBS

(2.4) B → S : {I,{NB}KIS}KBS

(1.5) S → B : {NB}KBS

Figure 2: An attack on the Woo-Lam protocol

The attack shows two simultaneous inbound authentication attempts initiated by an intruder I,
where I is also considered as any other regular participant. I pretends to be A in one (1.x) and retains
its own identity I for the other (2.x). I obtains nonces from B for both runs and encrypts the nonce
NB intended for A with its own server key and returns it to B, retaining its original identity. When
the nonce is returned by the server, it leads B to believe that it has authenticated A, whereas A has
not even participated in either of the runs. The attack is complete.

The attack shown in Figure 2 demonstrates the difficulty in designing such protocols and
emphasises the need for a formal and rigorous analysis of these protocols.

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 2006 21

3. SCHNEIDER’S CSP APPROACH
In order to deal with the problem highlighted in the previous section, Schneider presents a formal
framework that uses the process algebra CSP to model protocols. We present Schneider’s CSP
approach in detail, describing the relevant syntax for CSP and its trace semantics in Section 3.1. In
Section 3.2 we model the participants in the Woo-Lam protocol as CSP processes and specify a
network composed of these processes. We then present a trace specification that the network needs
to satisfy for the protocol to hold correct. Finally we adopt a proof strategy to verify this network.

While we discuss this notation in detail relevant to our usage in this paper, we take for granted
the reader’s basic knowledge of CSP and its use by Schneider (1998) to model security protocols;
in-depth treatments of CSP are provided by Hoare (1985) and, more relevantly, Ryan et al (2001).

3.1 CSP Events and Processes
A CSP system is modelled in terms of processes and events that these processes can perform, which
are essentially instances of communication, usually involving a channel and some data value.
Events may be atomic in structure or may consist of distinct components.

The CSP expression a → P describes a process P with event a in the interface of P. The process
is initially able to perform a and then behaves as P. The process STOP is the simplest CSP process
that can be described; it has no event transitions and does not engage in any events. The choice
operator ■■ provides the option for running either of the two processes, P and Q for example, when
put together as P ■■ Q. The parallel operator || is used to allow P and Q to run in parallel and

A

synchronise on events in a set of events A. This would be written as P||Q. If P or Q were to perform
A

any events that are not in A then they can do so independently without the need for any
synchronisation. A process P could be restricted on certain events A, expressed as P||STOP which

A

means P is not able to perform any events in A. The interleaving operator ||| is used to allow P and
Q to run in parallel but with no interaction with each other. This is written as P|||Q. For a larger
number of processes, an indexed form of the interleaving operator can be used. For a finite indexing
set I and process Pi defined for each i ∈ I, |||i∈I Pi denotes the interleaving of all processes Pi. For
the purpose of communication, a process may have channels on which it accepts inputs or produces
output. The expression c!v → P describes a process that will output the value of v on the channel c
and then behave as P. A process P accepting an input x on the channel c is described as c?x → P(x)
where the behaviour of P after the input is described as P(x), determined by the input.

3.1.1 Trace Semantics
The trace semantics in CSP allows us to capture the sequence of events performed by a
communicating process as a trace and then use the trace to model the behaviour of the process. A
trace is a sequence of events tr. A sequence tr is a trace of a process P if some execution of P
performs exactly that sequence of events. This is denoted as tr ∈ traces(P), where traces(P) is the
set of all possible traces of P. An example of a trace could be 〈a, b〉 where event a is performed
followed by event b, whereas 〈〉 is an empty trace.

A concatenation of two traces tr1 and tr2 is written as tr1 ^ tr2, which is the sequence of events
in tr1 followed by the sequence of events in tr2. A trace tr of the form 〈a〉^tr� expresses event a
followed by tr�, the remainder of the trace. A prefix tr� of tr is denoted tr� �tr. A non-contiguous
subsequence of a trace is denoted by the symbol , for example, 〈a,c,e〉 〈a,b,c,d,e〉. The length
#tr of a trace is the number of elements that it contains so that for example, #〈a,b,d〉 = 3, whereas
the set of events appearing in a trace tr is denoted as σ(tr). The projection operation, tr A, is the

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 200622

maximal subsequence of tr, all of whose events are drawn from a set of events A. Another form of
projection is on the set of channel names where tr ⇓ C provides the set of messages passed on a set
of channels named C.

Trace semantics are used by Schneider (1996) to specify security properties for protocols as
trace specifications. This is done by defining a predicate on traces and checking whether every trace
of a process satisfies the trace specification. For a process P and a predicate S, P satisfies S if S(tr)
holds for every trace tr of P. More formally, P sat S ⇔ ∀ tr ∈ traces(P) • S(tr).

We use the above definition to specify a trace specification for a process, in terms of the
occurrence of events in its traces. For some sets of events R and T, the trace specification R
precedes T is defined as

P sat R precedes T ⇔ ∀ tr ∈ traces(P) • (tr R ≠ 〈〉 ⇒ tr T ≠ 〈〉)

where a process P satisfies the predicate R precedes T if any occurrence of an event from T is
preceded by an occurrence of an event from R in every trace tr of P.

3.1.2 Schneider’s model of the network
Schneider (1998) models the protocol as a network where an arbitrary number of participants engage
with each other along. The participants are modelled as CSP processes acting in parallel. An intruder
process is also modelled alongside these participants, with capabilities as defined by Dolev and Yao
(1983). These capabilities include blocking, replaying, spoofing and manipulating any messages that
appear on any of the public channels in the network. In order to give the intruder complete control
of the network, Schneider models the network such that all processes communicate with each other
through the intruder, that is to say, the intruder becomes the medium. To express message
transmission and reception for each process, Schneider introduces two channels, send and receive,
which are public channels that all processes use to send and receive messages by. The events are
structured as send.i.j.m where a message m is sent by source i to destination j on the channel send
while receive.j.i.m represents a message m being received by j from a source i on the channel receive.

We consider a set of users to represent all the participants that use the network and Intruder
to denote the intruder process. For each participant i ∈ , a CSP process USERi represents the
behaviour of the participant. We specify the complete network NET as

NET = (|||i∈ USERi) || Intruder

where all participants in are forced to synchronise with Intruder on send and receive
channels. In order to model the capabilities of the intruder according to the Dolev and Yao (1983)
model, Schneider (1998) introduces a generates ‘ ’ relation to characterise what messages may be
generated from a given set of messages. The rules that define this relation are as follows, where S
is some set of messages, m is a message and k is some key

■ m ∈ S then S m

■ S m and S ⊆ S� then S� m

■ S mi for each mi ∈ S� and S� m then S m

■ S m ∧ S k ⇒ S {m}k

■ S {m}k ∧ S k ⇔ S m

■ S m1 .m2 ⇔ S m1 ∧ S m2

■ S m1 ∧ S m2 ⇔ S m1 .m2

(send, receive)

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 2006 23

The relation can be extended to simulate further properties of cryptography or message
extraction. We use this relation to specify a recursive definition of Intruder as follows

Intruder(S) =
send.i.j.m → Intruder(S ∪ {m})
■■

■■ receive.i.j.m → Intruder(S)

The Intruder process is parameterised by a set of messages S that denotes the set of messages in
the possession of the intruder. The process is defined such that it has a choice: the first branch
models the transmission of a message m, from a participant i to participant j on the channel send,
after which the process behaves like the intruder with that additional message m. The second branch
allows the intruder to send any message m to any participant i pretending to be some participant j,
generated under from S, after which the process remains with the same knowledge. The above
definition of Intruder allows us to achieve two things, firstly, model the behaviour of an intruder in
precise terms, such that it may (or may not) wish to block, spoof or manipulate some (or all)
messages, and, secondly, allow the intruder to possess any initial public knowledge about the
network such as participant identities and their respective public keys. Schneider (1998) denotes
such a set of initial knowledge, Initial Knowledge IK, and specifies Intruder such that Intruder(IK)

3.2 Modelling the Woo-Lam network
We now model the Woo-Lam protocol in CSP as a network and specify the authentication property
for this network as a trace specification. We then describe the proof strategy to verify this network
for the given trace specification.

While modelling the different processes of a protocol, Schneider (1996) takes advantage of the
extensibility of CSP to introduce additional control events known as signals. These signal events are
then used in trace specifications to express the authentication goals of a protocol. We model the
three participant roles in the Woo-Lam protocol in CSP below

User A = ■■ b send.A.b.A → User B(nB) = receive.B.a.a →
receive.A.b.n → send.B.a.nB →
Running.A.b.n → receive.B.a.{nB}Kas →
send.A.b.{n}KAS → Stop send.B.s.{a,{nB}Kas}KBS →

receive.B.s.{nB}KBS →
Server = receive.S.b.{a,{n}Kas}Kbs → Commit.B.a.nB → Stop

send.S.b.{n}Kbs → Stop

In the model above, we specify a Running.A.b.n signal and introduce it in A’s run, indicating that
A is aware of its involvement in a run with b and the nonce n being used as part of this run. We specify
a corresponding Commit.B.a.nB signal on B’s behalf indicating that B has completed the protocol run
and authenticated a using nonce nB. The Commit.B.a.nB signal is placed at the end of B’s run as it is
only when B receives the final message from S it can be assured of A’s involvement in the run. The
entire network is composed of the above processes along with an Intruder process that is assumed to
be in complete control of the network. In order to model it as such, we specify our NET as where
UserA, UserB and Server all communicate with each other only through an Intruder process and
consider a specific run of the protocol between UserA and UserB using the nonce NB.

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 200624

NET = (UserA | | | UserB(NB) | | | Server) | | Intruder(IK)

We show this specific run of the protocol with appropriate signals in Figure 3 above.

3.3 Proof strategy
We now specify a trace specification that expresses the authentication property needed to be
satisfied by NET. We use the signal events for the particular run shown in Figure 3. B’s
authentication of A is now expressed as whenever Commit.B.A.NB appears in a trace of NET the
corresponding Running.A.B.NB appears beforehand. This is formalised as

NET sat Running.A.B.NB precedes Commit.B.A.NB

In other words, if Commit.B.A.NB occurs then Running.A.B.NB precedes it. If NET could be
proved to satisfy this specification, then the protocol is proved correct for the property of
authentication. Once an authentication property is specified as a trace specification, Schneider
(1998) adopts a simple proof strategy to verify NET against it: if the signal event Running.A.B.NB

is prevented from occurring in NET, then the following signal event Commit.B.A.NB is not possible
in NET. More formally Commit.B.A.NB should not appear in any trace tr of NET || Stop

Running.A.B.NB

NET || Stop sat tr Commit.B.A.NB = 〈〉
Running.A.B.NB

If the above property is satisfied then Commit.B.A.NB can never occur in NET restricted on the
Running.A.B.NB event and therefore authentication is verified.

4. ANALYSING THE WOO-LAM
In the previous section, we have built a CSP system along with a trace specification that the system
needs to satisfy. To verify the system for such a specification, Schneider (1998) introduces the
notion of a rank function. We describe the idea along with the central rank function theorem
(Schneider, 1998) in Section 4.1. In Section 4.2, we construct a rank function for the Woo-Lam
protocol and evaluate the different conditions provided in the theorem to judge the correctness of
the protocol.

Figure 3: A specific run of the Woo-Lam protocol involving A and B using nonce Nb

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 2006 25

4.1 Rank functions
Consider the set of participant identities on the network to be , the set of nonces used by the
participants in protocol runs as and a set of encryption keys used as . The set of all such
atoms is , where the atoms are defined as = ∪ ∪ . We consider a message space
to contain all the messages and signals that may appear during a protocol’s execution, such that m ∈

⇒ m ∈ . Schneider (1998) defines a rank function ρ to map events and messages to integers
ρ: → . The message space is then divided into two parts where

p– = {m ∈ | ρ(m) � 0} p+ = {m ∈ | ρ(m) > 0}

The purpose of this partition of the message space is to characterise those messages that the
intruder might get hold of without compromising the protocol – assigned a positive rank – and those
messages that the enemy should never get hold of – assigned a non-positive rank. It is desirable for
a process never to transmit a message of non-positive rank. For a certain process P to maintain
positive rank, it is understood that it will never transmit a message with a non-positive rank unless
it has previously received a message with a non-positive rank. More formally, for a process P,

P maintains ρ ⇔ ∀ tr ∈ traces(P) • ρ(tr ⇓ receive) > 0 ⇒ ρ(tr ⇓ send) > 0

In other words P will never transmit any message m of ρ(m) � 0 unless it has received some
m� of ρ(m�) � 0 previously, with respect to some rank function ρ. It is not important who the
message is received from or is sent to.

Schneider (1998) presents a general-purpose rank function theorem that ensures the messages
that an Intruder gets hold of do not compromise the security property that the protocol provides.
Considering that the communication channels are public – under the control of the Intruder – any
message that flows through them should be of positive rank. If a message with non-positive rank
flows through the channel then the intended secrecy of the message is compromised. A protocol is
verified to be correct with regard to its security property, if it allows messages of only positive rank
to be communicated through the channels.

RANK FUNCTION THEOREM

If, for sets R and T, there is a rank function ρ: → satisfying
R1) ∀ m ∈ IK • ρ(m) > 0
R2) ∀ S ⊆ , m ∈ • ((∀m� ∈ S • ρ(m�) > 0) ∧ S m) ⇒ ρ(m) > 0
R3) ∀ t ∈ T • ρ(t) � 0
R4) ∀ i ∈ • Useri || Stop maintains ρ

R

then NET sat R precedes T

The theorem, the proof of which is available in (Schneider, 1998), states that if the rank function,
and therefore the underlying NET, satisfies the four properties, then no messages of non-positive
rank can circulate in NET || Stop. In particular, an intruder should not be able to generate any illegal

R

messages from the messages it knows at the beginning of the protocol from the set IK, nor from the
messages it sees during the protocol execution, denoted by a set S. Also, honest participants should
not be able to generate any illegal messages unless they are sent one, that is, every honest process

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 200626

maintains ρ while being restricted on R. The actual verification of the theorem conditions is
performed manually for every rank function constructed for a protocol. Verifying different
specifications may require different rank functions to be constructed for the same protocol. This is
due to the different events that NET may be restricted on for different specifications – sets R and T
will contain different events for different cases.

Note that although the theorem provides an assurance for a protocol once a rank function is
constructed, there is no guarantee that a suitable rank function (that satisfies the theorem conditions)
exists for every case. There may be cases where it is not possible to concur on a rank of a message
or where an attack on the protocol is found. In most cases, however, the failure of a rank function
to satisfy the conditions of the theorem signifies a flaw in the protocol and provides an insight into
the workings of a protocol, which can lead to the discovery of an attack.

4.2 Constructing the rank function
We identify the ranks on the message space for our NET and construct the rank function shown in
Figure 4 below. The rank function we have constructed assigns all user identities in the set a
positive rank. The identity of all users is assumed to be known to the Intruder and therefore could
be impersonated by the intruder. All the nonces in the set , including NB, are assigned a positive
rank. B sends out NB in cleartext and therefore an Intruder can get hold of the nonce without further
ado. The two shared keys used in the protocol, KAS and KBS, are both assigned a non-positive rank
as they are supposed to be private to A and B. As the NET is restricted on the event Running.A.B.NB,
the three messages (see Figure 3) that follow this event, {NB}KAS, {A,{NB}KAS}KBS and {NB}KBS,
should not appear in the restricted NET either. We assign these three messages a non-positive rank
along with signal event Commit.B.A.NB, which logically follows these three messages.

Figure 4: A rank function for the Woo-Lam protocol

Recall that the rank function theorem is defined in terms of general sets R and T. For our
analysis, we assign sets R and T to Running.A.B.NB and Commit.B.A.NB respectively

R = {Running.A.B.NB} T = {Commit.B.A.NB}

This corresponds to the proof strategy described in Section 3.3, where we need to check for the
occurrence of Commit.B.A.NB in NET restricted on Running.A.B.NB. We now consider each of the
conditions of the rank function theorem and check whether our rank function satisfies them.

R1) ∀ m ∈ IK • ρ(m) > 0

The set IK contains all the agent identities and a key KIS shared between I and S. There is nothing
in this set that is of non-positive rank. The condition is deemed satisfied.

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 2006 27

R2) ∀ S ⊆ , m ∈ • ((∀m� ∈ S • ρ(m�) > 0) ∧ S m) ⇒ ρ(m) > 0

This conditions checks whether a message of non-positive rank can be generated under the ‘ ’
relation from a set of messages of positive rank. None of the messages identified as of positive rank,
shown in Figure 4, let the Intruder generate any messages that are of non-positive rank. The three
messages of non-positive rank, {NB}KAS, {A,{NB}KAS}KBS and {NB}KBS, are encrypted under keys
KAS and KBS both of which are of non-positive rank. This prevents the Intruder from generating these
messages as the Intruder has no way of acquiring these two keys. The condition is deemed satisfied.

R3) ∀ t ∈ T • ρ(t) � 0

This condition requires none of the events in T to be of positive rank. The only event in set T is
the signal event Commit.B.A.NB of non-positive rank. This condition is deemed satisfied.

R4) ∀ i ∈ • Useri || Stop sat maintain positive ρ
R

For this condition to be satisfied every process in the NET needs to maintain positive ρ while
being restricted on the events in set R, where R = {Running.A.B.NB}. We consider processes UserA,
UserB and Server, restrict them on Running.A.B.NB and check whether they maintain positive ρ.
Since only UserA can perform Running.A.B.NB, the other two processes remain unaffected. The
restriction on UserA simplifies to

UserA | | Stop = ■■ b send.A.b.A →
Running.A.B.NB receive.A.b.n →

if b = B ∧ n = NB then Stop
else Running.A.b.n →
send.A.b.{n}KAS → Stop

In the choice operator ■■ b, b indicates the other participants that UserA may communicate with.
If participant b = B and the nonce n = NB then we instruct UserA to Stop. Any other participant
instead of B or even a different nonce then NB would allow UserA to continue as normal.

Upon inspection, we observe that UserA | | Stop fails to maintain positive ρ. In terms
Running.A.B.NB

of protocol runs, consider a run where A initiates the protocol with a participant other than B (and
I intercepts) as shown in Figure 5 below

(1) A → I(C) : A
(2) I(C) → A : NB

(3) A → I(C) : {NB}KAS

Figure 5. A possible run of the protocol

In this case, the process UserA | | Stop behaves as follows
Running.A.B.NB

send.A.C.A →
receive.A.C.NB →
if b = B ∧ nb = NB

then Stop
else Running.A.C.NB →

send.A.C.{NB}KAS → Stop

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 200628

A outputs the message {NB}KAS while communicating with another participant C. The message
{NB}KAS is of non-positive rank as shown in Figure 4. This shows that A does not maintain positive
ρ despite the restriction on it and the protocol, therefore, fails to meet the trace specification
presented in Section 3.3. The theorem has been successful in finding a flaw in the Woo-Lam
protocol that we demonstrated earlier in Section 2.

5. CONCLUSION
We have applied Schneider’s rank function theorem to the Woo-Lam protocol to expose any flaws
in the design and have managed to identify the attacks discussed earlier successfully. While this
approach provides a formally meticulous analysis, the process of identifying a rank function is non-
trivial. Once a rank function is constructed, however, it gives confidence in the soundness of the
protocol design.

We recommend this approach for thorough investigation of similar protocols. The process of
finding a rank function requires intuitive understanding of such protocols and focuses attention on
relevant design aspects of these protocols.

REFERENCES
DOLEV, D. and YAO, A.C. (1983): On the security of public key protocols. IEEE Transactions on Information Theory

29(2):198–208.
HOARE, C.A.R. (1985): Communicating sequential processes. Prentice-Hall.
GONG, L., NEEDHAM, R. and YAHALOM, R. (1990): Reasoning about belief in cryptographic protocols. Proc. IEEE

Symposium on Research in Security and Privacy, Los Alamitos, California, USA, 234-248. IEEE Computer Society
Press.

GORDON, A.D. and JEFFREY, A. (2001): Authenticity by typing for security protocols. Proc. 14th IEEE Computer
Security Foundations Workshop, 145–159, IEEE Computer Society Press.

LOWE, G. (1996): Breaking and fixing the Needham-Schroeder public-key protocol using FDR. Proc. of TACAS, LNCS
1055:147–166, Springer-Verlag.

MEADOWS, C. (1996): The NRL protocol analyzer: An overview. Journal of Logic Programming, 26(2):113–131.
MITCHELL, J.C., MITCHELL, M. and STERN, U. (1997): Automated analysis of cryptographic protocols using Murj.

Proc. IEEE Symposium on Security and Privacy, 141–151. IEEE Computer Society Press.
RYAN, P., SCHNEIDER, S., GOLDSMITH, M., LOWE, G. and ROSCOE, B. (2001): Modelling and analysis of security

protocols. Addison-Wesley.
SCHNEIDER, S. (1996): Security properties and CSP. Proc. IEEE Symposium Research in Security and Privacy,

Oakland, California, USA. IEEE Computer Society Press.
SCHNEIDER, S. (1998): Verifying authentication protocols in CSP. IEEE Transactions on Software Engineering

24(9):741–758.
SYVERSON, P.F. and van OORSCHOT, P.C. (1994): On unifying some cryptographic protocol logics. Proc. IEEE

Symposium on Research in Security and Privacy, 14–28. IEEE Computer Society Press.
THAYER FÁBREGA, F.J. HERZOG, J.C. and GUTTMAN, J.D. (1998): Strand spaces: Why is a security protocol correct?

Proc. IEEE Symposium Research in Security and Privacy, 24–34. IEEE Computer Society Press.
WOO, T.Y.C. and LAM, S.S. (1992): Authentication for distributed systems. Computer 25(1):39–52.
WOO, T.Y.C. and LAM, S.S. (1994): A lesson on Authenticated Protocol design. Operating Systems Review 28(3):24–37.

BIOGRAPHICAL NOTES
Siraj Shaikh is a Lecturer in Computer Networking with the Department of
Multimedia and Computing, at the University of Gloucestershire, Cheltenham
Spa, UK. He received a BSc (Honours) in Computing from Northumbria
University, a MSc in Computer Networking from Middlesex University and
has been a PhD student at University of Gloucestershire since 2003. His PhD
research investigates the formal specification and analysis of authentication
protocols using the CSP framework. His other research interests include
design and performance analysis of security protocols, particularly IPSec, Siraj Shaikh

Analysing the Woo-Lam Protocol Using CSP and Rank Functions

Journal of Research and Practice in Information Technology, Vol. 38, No. 1, February 2006 29

SSH and Kerberos, along with security for wireless networks and information
security education.

Vicky Bush lectures at the University of Gloucestershire. She has also
taught at the universities of Manchester and West of England. Her research
interests centre round the use of formal methods applied in various contexts,
such as demonstrating the equivalence of algorithms designed to run on
machines with different numbers of processors, specifying computer
programs and the analysis of security protocols. She is also interested in the
possibilities of visualization to aid the teaching of programming.

Vicky Bush

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

