研究、探讨

快速提高NSGA-II算法双目标优化效率的方法

刘 敏 1 , 陈宝兴 1 , 郑金华 2

- 1.漳州师范学院 计算机科学与工程系, 福建 漳州 363000
- 2.湘潭大学 信息工程学院, 湖南 湘潭 411105

收稿日期 2008-7-8 修回日期 2009-1-8 网络版发布日期 2009-12-6 接受日期

摘要 NSGA-II是一种性能优良的多目标进化算法,近年来非常流行。为了进一步改进NSGA-II在双目标优化时的效率,采取了按需分层的策略,提出了一种新的非支配前沿集分层方法以替代NSGA-II原有的分层方法。与NSGA-II的时间复杂度0(N^2)相比,新方法的时间复杂度减少为0(N^2 N)相比,新方法的时间复杂度减少为0(N^2 N), N^2 N分前沿层数(N^2 N)。实验结果也表明,新方法与NSGA-II相比具有更少的非支配前沿层数,支配比较次数和运行时间。

关键词 多目标进化 非支配前沿 按需分层

分类号 TP18

Approach to improve bi-objective optimization efficiency of NSGA-II

LIU Min¹, CHEN Bao-xing¹, ZHENG Jin-hua²

- 1.Department of Computer Science and Engineering, Zhangzhou Normal College, Zhangzhou, Fujian 363000, China
- 2. Institute of Information Engineering, Xiangtan University, Xiangtan, Hunan 411105, China

Abstract

NSGA-II is a multi-objective evolutionary algorithm, and its performance is so good that it has become very popular in the last few years. To improve its bi-objective optimization efficiency, in this paper, a layering strategy according to need is adopted and so a new algorithm to construct the set of non-dominated fronts is proposed to replace the original method of NSGA-II. Compared with the NSGA-II's computational complexity (O (N^2)), the new algorithm's computational complexity is reduced to O $(kN+N\log N)$, k is the number of fronts, and k << N. The experiment results also show that there are fewer layers of non-dominated fronts, counts of dominate compare and much less running-time in the new approach compared with NSGA-II.

Key words multi-objective evolution non-dominated front layering strategy according to need

DOI: 10.3778/j.issn.1002-8331.2009.34.015

扩展功能

本文信息

- ▶ Supporting info
- ▶ **PDF**(557KB)
- ▶[HTML全文](0KB)
- **▶参考文献**

服务与反馈

- ▶把本文推荐给朋友
- ▶加入我的书架
- ▶加入引用管理器
- ▶复制索引
- ► Email Alert
- ▶文章反馈
- ▶ 浏览反馈信息

相关信息

▶ <u>本刊中 包含"多目标进化"的</u> 相关文章

▶本文作者相关文章

- 刘敏
- 陈宝兴
- 郑金华