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data mining algorithm to adaptively profile legitimate customer behaviour in a form of association
rule set from a transaction database. Then the incoming transactions are compared against the
user profile to indicate the anomalies. A novel pattern match approach is proposed to evaluate
how unusual the new transactions are. An empirical evaluation shows that we can accurately
differentiate the anomaly behaviour from profiled user behaviour. 
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1. INTRODUCTION
It was shown by Kerr (2002) that internet transaction fraud is 12 times higher than in-store fraud.
And online fraud rates have held steady since 2000, despite significant efforts by merchants, card
issuers and law enforcement to curb fraud. All web merchants are liable to any of the various types
of online transaction fraud, regardless of size, transaction volume or internet expertise. Hackers and
fraudsters are becoming more sophisticated and skillful at manipulating internet protocol, web
languages and tools to discover any weakness that they can exploit. Thousands of web merchants
experience suspicious transaction activities and other types of account abuse each day. Therefore,
an efficient online transact fraud detection system is badly needed by merchants to protect the
legitimate customer, to lower the maintenance costs and to increase public confidence and trust. 

Most previous work for fraud detection or anomaly detection was classification based. Some
well known algorithms utilized for fraud detection are NB (naïve Bayesian), proposed by Elkan 
et al (1997), C4.5, by Quinlan (1998) and BP (Back-propagation). The researches of Domingos
(1995), Elkan (1997; 2000) and Witten (1999) show that NB algorithm is very effective in many
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real world data sets and is extremely efficient in that it learns in a linear fashion. However when
attributes are redundant and not normally distributed, the predictive accuracy is reduced. C4.5 can
output not only accurate predictions but also explain the patterns, decision tree and rule set, in it.
However, scalability and efficiency problems, such as the substantial decrease in performance, can
occur when C4.5 is applied to large data sets. Back-propagation neural networks can process a very
large number of instances, and have a high tolerance to noisy data. However, Agrawal (1995)
showed that the BP algorithm requires long training times and extensive testing and retraining of
parameters. The common disadvantage of all these algorithms is that they rely on supervised
training, which requires human involvement to prepare training cases, and test cases to optimize
parameters. Since most online systems contain non-stationery data due to the changing of the
individual users’ behaviours. A fraud detection system must be able to adjust its detector to keep up
with the change of the user behaviour in order to indicate fraud transactions from legal transactions
more accurately. The supervised learning techniques described above are inadequate to detect
fraudulent transactions in an online system.

To solve this problem, a novel fraud detection framework is proposed in this paper. Individual
user’s behaviour pattern is dynamically profiled from the transactions by using a set of association
rules. The association rule is first introduced by Agrawal et al (1993). The incoming transactions
for that user are then compared against the profile in order to discover the anomalies, based on
which the corresponding warnings are outputted. Our algorithm is evaluated on both synthetic data
and real data. Experimental results show that our algorithm can accurately differentiate the anomaly
behaviour from profiled user behaviour. 

The paper is organized as follows. The next section presents the basic idea of our fraud detection
framework. In Section 3 we introduce the architecture and the sub-modules of our framework and
the corresponding algorithms in detail, including definitions and theoretical background of our
approach. An empirical evaluation is shown in Section 4. The performance of our system is
compared among different algorithms by different measuring techniques. And finally, in Section 5
we present our conclusions and propose our idea for future work. 

2. BASIC IDEA
In this section, we will describe the basic idea of our fraud detection algorithm. Before doing so, we
will first give some definitions. 

Definition 2.1. A set of attribute-value pairs or items ∑ = {ai (vj)}, where i ∈ {1, …,n}, n is the
number of all possible attributes in the database we want to keep record, j ∈ {1, …, m(i)}, m(i) is
the possible values of attribute ai, m(i) is depended on the granularity specified along attribute ai .
We also use Ii to represent an attribute-value pair or item ai  (vj) for simplicity. An example of
attribute-value pair is Price(“$1-$10”), where Price is an attribute, “$1-$10” is a value of this
attribute. The possible values are depended on the granularity or interval of the attribute Price. The
interval is $10 in this example. Another example of an attribute-value pair is Time(“Evening”),
where Time is an attribute, “Evening” is a possible value. By different granularity the attribute-value
pair could be Time(“9pm”). The different granularity could cause large differences on the
performance of behaviour profiling.

Definition 2.2. The transactions are records of the form T(t) where t is a value of the time variable
D. Each transaction consists of a set of certain attribute-value pairs from ∑ recorded in a period of t.
A transaction database contains all the transactions. 
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The most recent transactions for an individual user in a transaction database are analyzed in
order to profile the current behaviour or habit for that customer. The word ‘recent’ is spelled by a
slide window, which could be a time window or a transaction count window. For example, recent
transactions could be all the transactions in the past two months, or the recent 500 transactions. The
customer’s profile is utilized to monitor a new transaction of this user to indicate how unusual the
new transaction is. At the same time, the customer’s old profile is automatically updated by
accumulating the occurrences of the new attributes, which represents the user’s new behaviour. It is
quite reasonable to assume that a normal user should have a behaviour pattern which indicates his
or hers consuming interests or habits, since a totally randomly consuming behaviour is very
uncommon.

We use a set of association rules to profile a user’s recent behaviour.

Definition 2.3. Association rules are the implication of the form X→Y, where 

The association rule X→Y is interpreted as data set that satisfies the conditions in X are also
likely to satisfy the conditions in Y. An example of an association rule is:

day(“Saturday”) ∧ time(“8pm-10pm”)→play(“Xbox contest”) [support=15%, confidence=77%].
The rule indicates that for all transactions of a customer recorded in a time window, 15%
(support) transactions are playing “Xbox contest” in “Saturday”, “8pm-10pm”. There is a 77%
probability (confidence) that if a transaction happens in “Saturday”, “8pm-10pm” it would be
an Xbox contest. 

Two important measures for association rules, support and confidence, are defined as follows.

Definition 2.4. The support, s, of an association rule is the ratio (in percent) of the transactions
containing X∪Y to the total number of transactions analyzed, |R(t)|. If the support of an association
rule is 15% then it means that 15% of the analyzed transactions contain X∪Y. Support is the statistic
significance of an association rule. The association rules have the supports less than 5% would be
considered not very important to profile a user’s behaviour. While a high support is often desirable
for association rules. 

Definition 2.5. For a given number of transactions, confidence, c, is the ratio (in percent) of the
number of transactions that contain X∪Y to the number of transactions that contain X. Thus if we
say an association rule has a confidence of 77%, it means that 77% of the transactions containing X
also contain Y. The confidence of a rule indicates the degree of correlation in the dataset between
X and Y. It is used as a measure of a rule’s strength. Often a large confidence is required for
association rules. 

An FP-tree (frequent pattern tree) structure and FP-tree growth algorithm, proposed by Han
(2000) are utilized to uncover these hidden association rules from the recent transactions for this
user. We improve the FP-tree growth algorithm to allow it to mine both intra-transaction
associations and the inter-transaction association. It will be discussed in Section 3 and Section 4. 

Any new transaction of a user is compared against his or hers FP-tree to indicate the anomaly,
which means how unusual the transaction is. A novel FP-tree based similarity measure algorithm is
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utilized to calculate the anomaly. We also use an accumulating algorithm to accumulate the low
suspicious level warning to generate a high-confidence alarm. By comparing the alarm against a set
of thresholds, corresponding fraud resolution could be performed. 

3. NMT FRAUD DETECTION FRAMEWORK
We will describe the architecture of our experimental system, NMT (New Mexico Tech) fraud
detection framework in this section. Our system consists of three major modules: Data engine, rule
engine and rule monitor. They are shown inside a dashed rectangle in Figure 1. The objects
surrounding the FDS (fraud detection system) make a typical online transaction system, which
includes several web applications and web services to provide OLTP (OnLine Transaction Process),
a database storing transaction data, and a database replication in order to provide minimum
performance degradation on OLTP by backend data process or analysis.

FDS is a backend process, whose impact on the front end of the online system is minimized,
since it only talks to the replication database. Data engine serves as an interface between the
replication database and the FDS. It collects and pre-formats the recent transactions of all individual
customers in the online system. The recent transactions depend on the detection sensitivity, which
is specified by the customer through the web applications in OLTP. The rule engine module mines
the recent transactions to generate a profile, an association rule set stored in an FP-tree, for each
user. The FP-tree is updated adaptively after the new transactions of the user are added in replication
database. The rule monitor module monitors the new transaction for every user. Any new
transaction of a particular user is compared against the FP-tree for that user to indicate the anomaly.
The anomaly is then mapped into a corresponding suspicious level, which is sent back to OLTP. The
corresponding resolution is performed based on the suspicious level of a new transaction. In the
following sub-sections of this paper, we will describe the implementation of rule engine and rule
monitor in detail. 

3.1 Adaptive Association Rule Mining 
The major responsibility of rule engine is to adaptively generate association rule sets to profile user
behaviours. There are a large amount of techniques to mine association rules from a transaction

Figure 1: Architecture of NMT fraud detection system. The dashed rectangle is the fraud detection system. 
The objects surrounding it mask a typical online transaction system.
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database. Agrawal et al (1994) introduced an Apriori-like mining method to mining association rules.
An extension version of the Apriori algorithm also by Agrawal (1995) is able to mine generalized,
multilevel, or quantitative association rules. Moe et al (1996) introduced association rule mining
query languages. Ng et al (1998) introduced a constraint-based rule mining technique. Cheung et al
(1996) presented an incremental updating technique to discover the association rules in a large scale
database. Agrawal (1996) proposed another technique to perform parallel and distributed mining.
Brin et al (1997) introduced a dynamic itemset counting technique to reduce the number of database
scans. Ozden et al (1998) presented cyclic and interesting association rule mining. The most efficient
association rule mining algorithm so far is the FP-tree growth algorithm proposed by Han et al
(2000). It is able to mine the frequent patterns without candidate generation. Our fraud detection
approach is largely based on this algorithm. The benefits of this method are highly condensed yet
complete for frequent pattern mining, avoiding costly database scanning. More importantly, it allows
us to adaptively generate user profile without preparing labeled data. Some popular rule generators,
RL proposed by Clearwater (1993), C4.5 by Quinlan (1993) for example, are based on supervised
learning, which is not capable for adaptive profiling and is unaffordable for online transaction
detection, since training cases preparation requires human investigation and is time consuming. 

Each transaction includes the attributes of purchased product, time (in weekday), time (in day
part), grouped IP address and the grouped purchased amount. The abbreviations: ET-
entertainment, BK-book, CL-clothes, ST-Saturday, SU-Sunday, MO-Monday, EV-evening, MR-
morning, L#-less than # of dollars.

Table 1: An example of recent transactions for a customer. This table shows five transactions for a typical online
transaction system. The right column lists the corresponding frequent itemsets. Minimum support value in this

example is 60%. Minimum support is a user specified threshold for mining association rule from a database.

TID Transaction data Frequent Itemsets

1 ET, ST, EV, 129.138, L50 ST, 129.138, EV, ET

2 ET, ST, MR, 202.55,  L10 ST, ET, L10

3 ET, SU, MR, 129.138, L50 129.138, ET

4 BK, ST, EV, 129.138, L10 ST, 129.138, EV, L10

5 CL, ST, EV, 129.138, L10 ST, 129.138, EV, L10

Table 1 shows an example of five transactions. Each transaction is an itemset, which contains
five items or attribute-value pairs. 

Definition 3.1. A set of items or attribute-value pairs is referred to as an itemset. The occurrence
frequency of an itemset is the number of transactions that contain the itemset. This is also known
as support count. The frequency of itemset {ST} is 4 in this example.

Definition 3.2. If the occurrence frequency of an itemset is greater than or equal to the product of
min_sup and the total number of transactions, then it is a frequent itemsets. The value of min_sup
is called minimum support value. In the example shown in Table 1, the corresponding frequent
itemset for transaction 2 is {ST, ET, L10}, since items MR, 202.55 are less than the minimum
support value, 3 in this example (min_sup = 60%). Since the rarely occurred items would be filtered
out when we generate the frequent itemsets, the rarely occurred behaviour such as fraudulent
actions will be filtered out. That is the reason we could profile a user’s behaviour without the
preparation of the labeled data.
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To profile the behaviour or a user, an FP-tree structure, introduced by Han (2000), is used to
store compressed, crucial information about frequent pattern, from which association rules are
generated. FP-tree is a combination of a general prefix tree and a linked list table. Figure 2 shows
an example of creating a small FP-tree structure from the transactions shown in Table 1. The FP-

(a) An empty FP-tree (b) After inserting {ST, 129.138, EV, ET}

(c) After inserting {ST, ET, L10} (d) After inserting {129.138, ET}

(e) After inserting 1st {ST, 129.138, EV, L10} (f) Insert 2nd {ST, 129.138, EV, L10}

Figure 2: An example of an FP-tree construction
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tree stores quantitative information about frequent pattern. The tree nodes are arranged in such a
way that more frequently occurring nodes will have a better chance of sharing nodes than lesser
ones. From every tree node to the root, the path is a frequent pattern, from which association rules
could be generated. 

FP-tree is constructed by accumulating the occurrences of the attributes in recent transactions of
an individual customer. By mining an FP-tree, we can find all the conditional rules that correlate the
presence of one set of features with that of another set of features. However, we are not interested
in extracting these association rules. We use a pattern matching algorithm to compare a new
transaction directly with the FP-tree to indicate the new transaction’s anomaly. It will significantly
improve the overall system performance. The most attractive feature of the FP-tree is that it could
be updated by accumulating the occurrences of the attributes without any human involvement. It is
an ideal data structure to profile and monitor a non-stationary data set.

To create an FP-tree, recent transactions should be scanned twice. The first scan of the
transactions derives the set of frequent items. For example, the frequent itemset of the last
transaction is {CL, ST, EV, 129.138, L10}. The frequent items are then sorted in the order of a
descending support count. The resulting set or list is denoted L, which is {ST, 129.138, EV, L10}
in this example L is utilized to construct a header table shown in the left side of Figure 2(a). 

An FP-tree is then constructed from an empty root, shown in Figure 2(a). Branches of the FP-
tree are then inserted into the tree by scanning the transactions a second time. The items in each
transaction are processed in L order, and a branch is created for each transaction. For example, the
scan of the first transaction, “ET, ST, EV, 129.138, L50”, which contains four items {ST, 129.138,
EV, ET} in L order, shown in the first data row of Table 1, leads to the construction of the first
branch of the tree with four tree nodes: {ST}:1,{129.138}:1, {EV}:1 and{ET}:1, where {ST}:1 is
linked as a child of the root, {129.138}:1 is linked to {ST}:1…, shown in Figure 2(b). The number
after the semicolon in the tree node shows the current occurrence of an item. To make tree traversal
easy, an item header table is built so that each item pointer points to its occurrences in the tree via
a chain of node links. The items in the header table are absolutely the same as the element in L. 

The second transaction is processed in the same way as the first one. T2, “ET, ST, MR, 202.55,
L10” contains {ST}, {ET} and {L10} in L order. These items would result in a branch where
{ST}:1 is linked to the root and {ET}:1 is linked to {ST}:1, {L10}:1 is linked to {ET}:1. However
this branch would share a common prefix, {ST}, with the existing path for T1. Therefore we should
increase the count of the {ST} node by 1, and create two new tree nodes, {ET}:1 and {L10}:1,
which are linked as a child tree of {ST}:2, shown in Figure 2(c). In general, when considering the
branch to be added for a transaction, the count of each node along a common prefix is increased by
1, and nodes for the items following the prefix are created and linked accordingly. The repeated
insertion for T3 – T5 are shown in Figures 2(d)–(f). 

The size of an FP-tree is largely dependent on the minimum support, which decides the size of
the frequent itemset for a transaction after filtering. The FP-tree is constructed from these itemsets.
Therefore, the smaller minimum support value leads to a larger FP-tree, which profiles a user’s
behaviour more accurately, since it stores some associations having relatively small support counts.
However it requires more time to construct. The tradeoff between accurate profiling and time for
tree construction is shown in Figure 3. 

We can get all association rules under the condition of a particular frequency item by following
its node link chain in header table. For example, to get all rules for {L10} we should firstly search
the header table to find the node link chain of {L10}. The first node in the link chain is {L10}:2,
whose prefix path is ({ST}:4, {129.138}:3, {EV}:3). The corresponding association is
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({L10})→({ST}, {129.138}, {EV}) [40%, 67%], where 40% is the support, 67% is the confidence.
The support value is calculated by dividing current nodes’ occurrence count, 2 in this example, by
total transaction count, 5 in this example. It indicates how important this rule is to profile the user
behaviour. We calculate the confidence by dividing current frequency node’s occurrence count, 2 in
this example, by the node’s total occurrences, 3 in this example. It shows how strong this rule is.
By following current node’s link chain, we can get the second tree node {L10}:1. The corres-
ponding association is {L10}→({ST},{ET}) [20%,33%], which is generated in the same way. This
process continues until the null link chain pointer is met. 

3.2 FP-Tree Based Pattern Matching Algorithm
Two techniques are utilized to build the rule monitor. To indicate the anomaly of a new transaction,
we designed a novel FP-tree based pattern matching algorithm. And an alert accumulating algorithm
is used to lower the false alarm and to detect a set of fraudulent transactions with low suspicious
values.

For each frequent item ti in an FP-Tree, we should find all the prefix paths of ti, which is the sub
patterns base under the condition of ti’s existence. These prefix paths do not include all the possible
patterns containing ti. Since, some patterns are filtered by minimum support. An incoming
transaction having more than one item in the header table means that this transaction matches the
single frequent pattern in some level. To discover in what extent the new transaction matches the
association rules, we need to walk through the FP-tree by following the header table link chains to
compare that transaction to every sub pattern base. 

double SimMatch(T) {
sim = 0.0;
for each item ti in T {

if ( found headtablelink, in the head table ) {
sim_credit = 0.0;

for each tree node in Ni
j in headtablelink,

(a) (b)

Figure 3: Effect of decreasing minimum support value on a FP-tree. (a) FP-tree nodes increase when minimum
support value decreases. (b) FP-tree construction time increases when minimum support value decreases. 

The experiment is performed on the synthetic data. 10K transactions are used in this experiment.
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if (Pj(ti) ⊆ T )
sim_credit += G(Ni

j .s, Ni
j .c) × weight(ti);   

sim += sim_credit;
}

}
return sim;

}

The above pseudo code shows the pattern matching algorithm for calculating the similarity
between a new transaction and the user’s FP-Tree. Suppose T = {t1,t2,…,tn} is an incoming transaction.
For each frequent item t we calculate a similarity credit sim_credit(ti).by the following steps: Search
ti in header table. If not find, sim_credit(ti) = 0. Otherwise, follow the link chain to the first tree node
Ni

1 containing ti. A conditional frequent pattern (set of frequent items) can be obtained by following
Ni

1’s parent link until it reaches the root. Let’s denote the attributes set in this pattern as P1(ti). If P1(ti)
⊆ T, sim_credit(ti) is increased by a credit function, G(s, c), based on the support and the confidence
of Ni

1. In our implementation, we used an entropy like function: G(s, c) = –s × log2(1+ε–c), where s
is the support, c is the confidence, s≤c≤1.0, ε is a real number used to specify the upper boundary of
function G. The function is chosen by the intuition that if a new transaction matches with a rule having
larger probability it is more likely to match the user’s behaviour, and the confidence value is
emphasized. Discovering the best G(s, c) itself would be a good research topic.

Since different kinds of frequent items are of different importance to profile a user or a system.
For example, a matched IP pattern could be more important than a matched time pattern. A weight
function, weight(ti), was used to give various stress to the different item types. So we increase
sim_credit(ti) by G(s, c) × weight(ti) instead of G(s, c). The weight function could be a fixed look
up table, which maps the different item types to different weights. It is also possible to use a neural
network to train real data to get the optimized look up table. 

After Ni
1 is processed, we follow the link chain of Ni

1 to reach the second tree node, Ni
2,

containing ti. For that tree node we do the same thing as to Ni
1.The process is stopped when the Ni

j’s
link chain pointer is null. The similarity value for T is computed as: sim(T) = sim_credit(ti),

where sim_credit(ti) = weight(ti) × j G(Ni
j.s, Ni

j.c), j is the index of the node containing ti found by

following the head table link of ti.
The sim(T) would be mapped into a corresponding suspicious value. Similarity value represents

the extent that a new transaction is comparable to the customer behaviour patterns. The minimum
similarity value is zero, which means not a single rule is matched between the new transaction and
the user pattern. It indicates the highest suspicious level. By contrast, the larger similarity value
means a smaller suspicious level.  

3.3 Alert Accumulating Algorithm
We can setup a set of thresholds to fire corresponding fraud warnings. Technically, it is possible to
mis-classify some legal transactions, which do not follow the customer’s normal behaviour. Since
the frequent items are filtered by min support before creating the FP-tree. Therefore the tree is not
completed, the very unusual patterns are not collected in the tree. Moreover, a customer could also
suddenly change his or her behaviour. Another important issue is that in order to minimize the fraud
detection cost, the purchased amount is a factor of firing alarm. For a very small purchase amount,
for example .50$, even it is highly suspicious, fire an alarm is not economical. Since the objective
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of fraud detection action is to minimize the total cost. The cost model section explains this issue in
detail. By using a suspicious threshold for a single transaction, a sequence of fraud transactions with
low purchasing amounts could be missed.

To solve these problems, we use a novel technique to accumulate the warnings from a set of new
transactions. 

We calculate the alert values for a set of transactions by accumulating their suspicious values.
The transactions to be processed could include all the new transactions after last FP-tree updating,
or we can use an expiring time window to specify the transactions we would like to accumulate.
Then by comparing the alert sum instead of the single alert against a set of thresholds, a
corresponding fraud alarm would be fired. The threshold set is decided by the detection sensitivity
specified by the user.

We accumulate all transactions within the specified time window (T2~T1), as shown in Figure
4, by adding them together with the same emphasis. A simple step function is the most straight-
forward expiring function. Some examples of the expiring functions are shown in Figure 5. For a
step function, if time of a transaction, t, is larger than T2, f(t) equals to 1,  else f(t) equals to 0. We
also can emphasize the transactions that happen more recently by using either the nature logarithm
function or the polynomial functions.

The fraud alert value is calculated by: AlertValue = (s(Ti) × f(Ti) × amount(Ti)), where Ti is
a transaction in the accumulation window, s(Ti) is the suspicious value of Ti, f(Ti) is the expiring
weight of Ti specified by expiring function, amount(Ti) is the consumed money of transaction Ti . It
is reasonable that several highly suspicious transactions having very low consumed points will not
fire an alert, by contrast, only one highly suspicious transaction having very high consumed points
could fire an alert.

3.4 Fraud resolutions
The output of the fraud detection system is an alert value indicating the suspicious level of analyzed
transactions. This value is sent back to a web application in the OLTP. By comparing the alert value

Figure 4: Suspicious values within accumulation window. 
The height of a point indicates the suspicious value of this transaction. T0 is the moment that the FP-tree is most

recently updated. T1 is the current time. T1 and T2 is the boundary of the accumulation window.

Figure 5: Some examples of expiring functions

Step expiring
function

Nature logarithm
expiring function

Polynomial expiring
function
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to a set of thresholds, we are able to know the corresponding reaction to be performed. For example,
if the alert value for a transaction or a set of transactions is below .50, no warning is given. If the
alert value is in a range of .50 to .85, an email is sent to the user in order to give a fraud warning.
If the alert value is higher than .85, we might temporally lock the account to prevent further fraud
or loss. And the user should also be informed by an email or a message to verify the transaction and
unlock his or her account. If the user confirms this is a fraud transaction, further protection should
be performed, for example changing the password. If the user confirms this is a legal transaction,
we should unlock his account and the transaction would be added to the recent transaction set, from
which the customer’s FP-tree would be updated. Therefore the user profile, FP-tree, could be
adaptively changed by keeping up with the changing of the user’s behaviour.

4. PERFORMANCE STUDY
4.1 Data preparation
The real commercial database for performance evaluation is far more than possible. The only
available real time data for our experiments is a set of American Express Credit Card transactions
of an individual user within three and a half years. It is inadequate to measure the system
performance since the real time behaviours could be various from user to user. To evaluate the
system’s effectiveness on different kinds of user behaviours, we created a tool to simulate different
kinds of user behaviours. We then tested and evaluated NMT-FDS and other well known algorithms
(Naïve Bayes, C4.5, BP, SVM) on the same data sets. 

Diversity real time user behaviour requires a powerful and flexible simulator. To generate the
various user patterns, profile driven is an effective solution, since the profile could be creatively
designed in order to represent complex patterns. Our simulator is similar to the one proposed by
Chung (1995), whose functions are parsing the user profile and modeling the user behaviour by
following the rules defined in the profile file. 

The simulated data has the very similar formation as the American Express data. Table 1 is an
example of the simplified record coming from the simulated data sets. Two different types of user
profiles are used in our experiments to simulate the relatively regular behaviours and the relatively
irregular behaviours. An example of regular behaviour profile used in experiments is: most of the
transactions come from a small IP group, most transactions take place at weekend, transactions are
purchasing a group of products, the transactions likely occur in the evening. An example of irregular
behaviour is: transactions come from dynamic IPs, most transactions take place at weekend and
transactions are purchasing a group of products. 

For both of the profiles, we create 3000 legal transactions and 50 fraudulent transactions as a
labeled training set to train the supervised classification algorithms. Our approach takes all 3050
transactions as an unlabeled data set, that is to say, we don’t know the fraudulent and legitimate
when we create the user profile. The trick is that the fraudulent behaviour with very low occurrence
ratio will be filtered out when we create the FP-tree. We also create 3000 legal transactions and 20
fraudulent transactions as testing data. The fraudulent transactions are the transactions representing
totally random behaviours. 

4.2 Experiment results
Figure 6 on the following page shows the performance comparison among BP, NB, SVM and NMT-
FDS on both real time and simulated data. We use the ROC (Receiver Operating Characteristics)
curve to evaluate these classification algorithms. The ROC of a classifier shows its performance as
a trade off between selectivity and sensitivity. The area under the ROC is a convenient way of
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(1) (5) (9)

Simulated Regular Data Simulated Irregular Data American Express Data

(2) (6) (10)

(3) (7) (11)

(4) (8) (12)

BP

NB

SVM

Figure 6: ROC curve comparison among the different algorithms.
(1)–(4) show the ROC curves of different four algorithms on relatively regular data. (5)–(8) show the ROC curves

on relatively irregular data. (9)–(12) show the ROC curves on a data set of a single American Express user.

comparing classifiers. A random classifier has an area of 0.5, while an ideal one has an area of 1.
Figures 6(1)–6(4) show the ROC curves of four algorithms on relatively regular data. The areas
under the ROC are very close to 1, which means they work well to differentiate fraudulent data
against regular behaviour data. Figures 6(5)–6(8) show the ROC curves on a test data set of the
irregular behaviours. Figure 6(9)–6(12) show the ROC curves on a data set of an American Express
user. Experimental results show that our algorithms, NMT-FDS works much better on irregular data
than other algorithms. The reason is that dynamic IPs in irregular behaviour data set introduces
noises which largely hamper accurate learning of NB, SVM and BP. Since noises or rarely attributes
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Prediction Fraud Legal

Alert Hit False Alarm

No alert Miss Normal

Table 2: Outcome matrix for fraud detection

such as dynamic IPs would be automatically filtered by the min-support, FSD is capable to work on
the irregular data. A tree based classification algorithm, C4.5, has also been studied. It has a very
similar performance to NMT-FDS. However the supervised learning makes C4.5 inadequate for
adaptively profile updating. 

ROC curve is a very convenient way of comparing the performance of classifiers, however it
cannot show the misclassification cost. To measure the benefit of detecting fraud, we used a Cost
Model introduced by Chan et al (1998), a more realistic model, to accompany the different
classification outcomes. A cost model formulates the total expected cost of fraud detection. It
considers the trade off among all relevant cost factors and provides the basis for making appropriate
cost sensitive detections. The detection outcome is one of the following: hit, false alarms, miss, and
normal. They are outlined in Table 2. 

Table 3 shows the cost for corresponding outcome. We use a simplified cost model to evaluate
different algorithms. In our measurements, we assume fraud handling cost, fh, detection cost, dt and
false alarm cost, fp are fixed numbers. And tr is the amount of money related to a transaction lost
due to the mis-detection. The real time cost model could be much more sophisticated. 

The evaluation for the predictive models to find the optimum cost savings are: 

Model Cost Savings = No Action – [Hits Cost + False Alarms Cost + Misses Cost + Normal Cost],
where No Action is the total lost caused by fraud of a system without fraud detection, the costs of
the different outcomes are listed in Table 3.

Percentage Savings = Model Cost Savings / Best Case Scenario Cost Savings × 100, where the Best
Case Scenario Cost Savings is the total cost of an ideal fraud detection system, whose Miss Cost
and False Alarm Cost equal to zero.

Figure 7 shows the cost saving comparison among NMT-FDS, C4.5, NB, BP and SVM. All
algorithms are effective (percentage saving≈80%) to detect fraud against simulated regular

Table 3: Cost for corresponding outcome. 
fh: fraud handling and investigation cost, dt: detection cost, fp: false penalty including the inconvenience brought 

to user. tr: the amount of money of a transaction lost due to miss detection. It is easy to find the false alarm has the
largest penalty. An ideal fraud detection system should reduce the false alarms and the misses as much as possible.
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behaviour data. However, NB, BP and SVM are not good to detect the American Express data set
and simulated irregular behaviour data. In the latter case, by using NB or SVM, we even got a
negative saving, which means the system lost even more money by performing fraud detection with
these algorithms. 

5. CONCLUSIONS AND FUTURE WORK
We have presented a framework for detecting fraudulent transactions in an online system. We
describe the major modules of the framework and the related algorithms in detail. A prototype of
the fraud detection system has been built to evaluate our algorithm. A profile driven simulator is
designed to generate transaction data representing various behaviour patterns in order to evaluate
the performance of our algorithm. Comparisons are performed among NMT-FDS, C4.5, NB, BP
and SVM. Table 4 shows a summary of the qualitative comparison. Our system generates fraud
alarm accurately and efficiently on both the simulated and real data. Unsupervised training and self
adjustment to changing user behaviour make our system effective for monitoring online transaction
systems and provide fraud detection and protection.

In the future, we will extend our system to detect system level fraud by utilizing an approximate
weighted tree matching algorithm. Inter-transaction behaviour mining is also planned to enhance
the performance of individual user profiling. Our future work also includes optimizing pattern
matching algorithm, optimizing weight selection for different types of rules by real data training and
expanding our algorithm to real-time fraud prevention. 

Figure 7: Percentage savings comparison among algorithms 
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