Chapter 1 The Foundation: Logic and Proof

1.1 Propositional Logic

1. Introduction

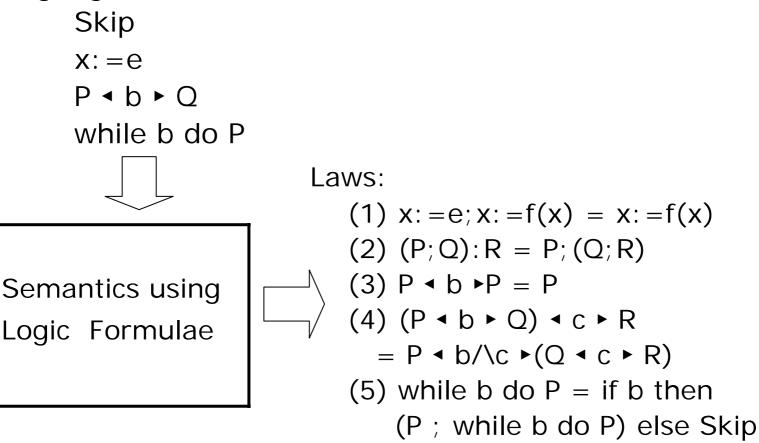
- Logic is the basis for mathematical reasoning.
 - Application:
 - 1. verification the correctness of programs;

2.

1. Introduction

Example 1

Algebraic Laws of Programming Languages
Language:



- Definition of proposition
 - A proposition is a declarative statement that is true or false, but not both. (即:表示判断的语句称为 命题)
- □ Example 1 (see page 2)
 - All the following declarative sentences are propositions:
 - 1. Washington, D.C. is the capital of the United States of America.
 - 2. Toronto is the capital of Canada.
 - 3. **1**+1=2.
 - 4. 2+2=3.
 - Propositions 1 and 3 are true, whereas 2 and 4 are false

- Example 2 (not propositions)
 - Consider the following sentences.
 - 1. What time is it now?
 - 2. Read it carefully?
 - 3. x + 1 = 2
 - 4. X + y = z
 - Sentences 1 and 2 are not declarative sentences.
 - Sentences 3 and 4 are neither true or false.
- The truth value of proposition is true, denoted by T.
- The false value of proposition is false, denoted by F.

- Negation of a Proposition ("非")
 - Definition 1
 - Let p be a proposition. The statement "It is not the case that p" is another proposition, called the negation of p.
 - 1. The negation of p is denoted by $\neg p$.
 - 2. The proposition " $\neg p$ " is read "not p".
 - Truth Table

р	¬p
Т	F
F	Т

- Negation of a Proposition ("非")
 - Example 3
 - **•** Find the negation of "Today is Friday."
 - **D** Solution:
 - 1. "It is not the case that today is Friday,"
 - 2. or "Today is not Friday,"
 - 3. or "It is not Friday today."

□ Conjunction ("并且"又称"合取")

- Definition
 - Let p and q be propositions. The proposition "p and q", denoted as "p \land q" is the proposition that is true when both of them are true and is false otherwise. The proposition "p \land q" is called the conjunction of p and q.
 - Truth Table

р	q	$p\wedgeq$
Т	Т	Т
Т	F	F
F	Т	F
F	F	F

- Conjunction
 - Example 5 (page 4)
 - Find the conjunction of the propositions p and q where p is the proposition "Today is Friday" and q is the proposition "It is raining today."
 - **Solution**:
 - 1. $p \land q$ is the proposition "Today is Friday and it is raining today."
 - 2. When is $p \land q$ true?

□ Disjunction ("或者"又称"析取")

- Definition
 - Let p and q be propositions. The proposition "p or q", denoted as $p \lor q$, is the proposition that is false when p and q are both false and true otherwise. The proposition $p \lor q$ is called the disjunction of p and q.

Truth Table

р	q	$p \lor q$
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F

Software Engineering Mathematics

□ Example 6

- Find the disjunction of the propositions p or q where p is the proposition "Today is Friday" and q is the proposition "It is raining today."
- Solution:
 - ${\tt _p} \lor {\tt q}\;\; {\tt is the proposition}$ "Today is Friday or it is raining today."

 \square When is p \lor q true?

□ Exclusive ("异或")

- Definition
 - Let p and q be propositions. The exclusive or of p and q, denoted by p ⊕ q, is the proposition that is true when exactly one of p and q is true and is false otherwise
 - Truth Table

р	q	p⊕q
Т	Т	F
Т	F	Т
F	Т	Т
F	F	F

- □ Implication ("蕴含")/Conditional Statement
 - Definition
 - Let p and q be propositions. The implication p→q is the proposition that is false when p is true and q is false, and is true otherwise.
 - In this implication p is called the hypothesis (or antecedent or premise) and q is called the conclusion (or consequence)
 - Truth Table

р	q	p→q
Т	Т	Т
Т	F	F
F	Т	Т
F	F	Т

Remark

- a variety of terminology to express $p \rightarrow q$ (page 6).
- When is $p \rightarrow q$ false?

How about the case that p is false?

- q→p is called the converse of p→q (逆命题).
- ¬q→¬p is called contrapositive of p→q (逆否命题).
- ¬p→¬q is called inverse of p→q (否命题).

□ Example 9 (see page 8)

- What are the converse, contrapositive, inverse of the implication " The home team wins whenever it is raining."?
- Solution:
 - The implication can be rewritten as: "If it is raining, then the home team wins" Then

- □ Biconditional ("当且仅当"又称"等价")
 - Definition
 - Let p and q be propositions. The biconditional p↔q is the proposition that is true when p and q have the same truth values, and is false otherwise.
 - Truth Table

р	q	$p \leftrightarrow q$
Т	Т	Т
Т	F	F
F	Т	F
F	F	Т

- $\Box p \leftrightarrow q$ ------"p if and only if q"
- □ p↔q has the same truth table of $(p \rightarrow q) \land (q \rightarrow p)$
- □ Example 10 (see page 9)
 - Let p be the statement "You can take the flight" and let q be the statement "You buy a ticket."
 - Then p↔q is the statement "You can take the flight if and only if you buy a ticket."

Truth Tables of compound Propositions

- Example 11
 - Construct the truth table of the compound proposition (p $\lor \neg$ q) → (p \land q)

D Solution: The Truth table is:

р	q	¬q	$p \lor \neg q$	$p\wedgeq$	(p ∨¬ q) → (p ∧ q)
Т	Т	F	Т	Т	Т
Т	F	Т	Т	F	F
F	Т	F	F	F	Т
F	F	Т	Т	F	F

3.Precedence of Logical Operations

Operator	Precedence
_	1
\land	2
\bigvee	3
\rightarrow	4
\leftrightarrow	5

Example:

- 1. $p \land q \lor r$ means ($p \land q$) $\lor r$ rather than $p \land (q \lor r)$
- 2. p ∨ q →r is the same as (p ∨ q) →r.
- Remark: We will use parentheses when the order of the conditional operator and biconditional operator is at issue.

4. Translating English Sentences

□ Example 12

- How can this English sentence be translated into a logical expression.
 - "You can access the internet from the campus only if (page 6) you are a computer science major or you are not a freshman (新生)."
- Solution:
 - a-----"You can access the internet from the campus."
 - b-----"You are a computer science major."
 - c-----"You are a freshman."
 - Then this sentence can be expressed as a → (c ∨ ¬b)

4. Translating English Sentences

□ Example 13

- How can this English sentence be translated into logical expression?
 - "You cannot ride the roller coaster (过山车) if you are under 4 feet tall unless you are older than 16 years older."
- Solution:
 - q-----"You can ride the roller coaster."
 - r-----"You are under 4 feet tall."
 - s-----"You are older than 16 years older."
 - Then the sentence can be translated to
 - $(r \land \neg s) \rightarrow \neg q.$

Homework

- □ Page 16~19
 - **2**, 4, 6, 8, 12, 26, 28, 30, 32,