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1.Introduction

0 Example 1 (page 21)
= p V —pis always true. It is a tautology.
= p /\ —pis always false. It is a contradiction.

a Definition 1 (see page 21)

1. Tautology GKE/AZL) : A compound proposition
that is always true, no matter what the truth
values of the propositions that occur in it, is
called a tautology.

2. Contradiction (kKAL) : A compound
proposition that is always false, no matter what
the truth values of the propositions that occur In
It, is called a contradiction.
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1.Introduction(cont.)

o Definition 1 (see page 21)

3.  Contingency (FM:/2z0) : A proposition that is
neither a tautology nor a contradiction is called
a contingency.
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2. Logical Equivalence

0 Example 2 (page 22)

= Show that -(pVq) and —-p/\—q are logically
equivalent.

o Truth Table

pla|lpVag [=(PVA)| =p | =g | =pA—(Q
T|IT| T F F F F
TIF| T F F T F
FIT| T F T F F
FIF| F T T T T
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2. Logical Equivalence (cont.)

a Definition 2 (logical equivalence)

= The propositions p and g are called logically
equivalent if p<q is a tautology.

= The notation p=qg denotes that p and q are
logically equivalence.
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3.More Examples

0 Example 3 (page 23)

= Show that p—qg and —-pVq are logically
equivalence.

o Solution: We construct the truth table for these
propositions in the table below. Since the truth
values of p—~qg and —p \/ q agree, these
propositions are logically equivalence.

p q —p —p Vg pP—q
T T F T T
T F F F F
F T T T T
F F T T T
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3.More Examples

0 Example 4 (page 23)

= Show that the propositions p Vv (q /A r) and (p V
aq) /A (p Vv r) are logically equivalent.

o Solution: By constructing truth table.

ryagAr | pv@An|pvaglp
T T T

(PVaA (@
V' r)

-

Mm|n|Tn|fnn|(H4|H4|[H|H]| ©
M| |4 4|4 |d| Q

Al A|n|A4|T]|H

L L e e I e B e B

m| | M| H|d(d]| -

m| || ||
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L T e T e I e B e N e B |
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4. Some Important Equivalences

o Logical Equivalence ( Table a)
» ldentity laws([f]—7#)

L. P ANT=p
2 p VFEF=p

s Domination laws (%)
1LPpVIT=T
2. p ANF=F

» Idempotent laws(FE25:4)
LpVp=p

2p AP=Dp
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4. Some Important Equivalences

o Logical Equivalence ( Table a cont.)

= Double negation law (i E 75 E )
1. (mp) =p

» Commutative laws(3Z #fd)
LPpANgQ=gqgADPp
2pVQag=qVvp

s Associative laws(4;i&13)
L (p AN Ar=pA(Q/Ar)
2 (pVgQVrIr=pV(QVr)
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4. Some Important Equivalences

o Logical Equivalence ( Table a cont.)

» Distributive laws (4 i)
L. PpV(gQADND=MATr)V(Q@Ar)
2P AN(gVID=0(mEVr)AN@Vr)

= De Morgan’s laws (- FEFR )
L.=(pAQ)=-pV (q
2=(p Vg =-pA (g

» Absorption laws(W )
LpV(p AQ)=p
2p A(PVa=p
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4. Some Important Equivalences

o Logical Equivalence ( Table a cont.)
= Negative laws
1L.p A —-p=F@ER
2pV ap=T (HPE
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4. Some Important Equivalences

o Logical Equivalence Involving Implication
( Table b)

s 23 SR (E
1. p—~qg = —p V(Q
» RS S0
1. p—~q = -q V p
s Others
LpVg=-p—>(g
2.p A q=—=(p—~ —0q)
. (p~d)=p A (g
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4. Some Important Equivalences (cont)

a Logical Equivalence Involving Implication
( Table b)

s Others
s P PDAPE—-N=p—~QAT
s. (PN A@->nN=@EVQq—>r
6. P~V PE—-N=p—~@QVr)
P—-nNV@—-n=EANQq)~—r

7.
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4. Some Important Equivalences

o Logical Equivalence Involving Biconditionals
( Table c)

= poqg=(pE—0a) A (@~—p)
R Peod=-(Qe p
s poqg =P NQ V (=p A Q)
s (P g) =p e (Q
o Questions:
= How to verify these equivalences?

= Answer: One way IS by constructing the
truth table.
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5. Extension of De Morgan’s Law

o Extension of De Morgan’s Law
= o(p A Q) = - p V —qgcan be extended to
=Py AP A AP =PV oap, Vo VoSp,
= (p V q) = - p /A =g can be extended to
=P, VP Vo VP =pg A =py A A Spy
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6. Constructing New Logical Equivalence

o Example 6: Show that =(p — q) and p A —qg are
logically equivalent. (page 26)

s Proof

—(p —~q)

= —(—p V Q) by Example 3
—-(=p) AN—=q by the second De Morgan law
P /A Q by the double negation law
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6. Constructing New Logical Equivalence

o Example 6: Show that =(p — q) and p A —qg are
logically equivalent. (page 26)

» PIRIE
—=(p ~a)
= —=(—p V Q) TR R
= =(—=p) N Qg il RE AR A

p /A =g DY e
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6. Constructing New Logical Equivalence

o Example 7: Show that

—(p V (=p A g)) and =p A—q

are logically equivalent.

s Proof

(P V (—=p A Q))

—p A =(=p A Q)
=p A (=(=p) V —0Q)
—=p A (p V—Q)

FV (=p A —Q)
(—p A =q) AF
-p A g

Software Engineering Mathematics

by the second De Morgan law
by the first De Morgan law
by the double negation law

(=p A p) A (=p A =qg) by the second distributed law

because —-p A p=F
by the communicative law
by the identify law for F

SEI of ECNU JifUiri©

18



6. Constructing New Logical Equivalence

o0 Example 7: Show that —=(p V (=p A q)) and =p A—q
are logically equivalent.

. PIRE
=PV (=p AN Q)

==p A =(=p A Q) ot R AR A
= =p A (=(—p) V —Q) i EE R A
= p A (p V —Q) XUHE A5 58 13
=(Cp Ap)V (=p A —Qq) padL e
=FV (=p A —0Q) A
=(—-p A —=q) V F AT

—-p /\ —=Q 7] —
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6. Constructing New Logical Equivalence

o Example 8: Show that (p A q)—(p V) is a tautology.

s Solution:

(P A~ Va

=-=(pANag V(pVa
=(CpV—-q V(pVa)
=(CEp V)V (—qVa

{
_|
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by Example 3

by the first De Morgan law
by the associative and
communicative law for
disjunction

by example 1 and the
communicative law for
disjunction

by domination law
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6. Constructing New Logical Equivalence

o Example 8: Show that (p A qQ)—(p Vq) is a tautology.

Rk
(P A= Va

(P AQ) V (pVaQa)
(—pV —-q)V(VQg

=(CpVpV(EagVa)
=TVT
=T
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Homework

a0 Page 28—30
= 4,10, 14, 28, 30, 60
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