Chapter 1
The Foundation: Logic and Proof

1.2 Propositional Equivalence

1.Introduction

- Example 1 (page 21)
 - $p \lor \neg p$ is always true. It is a tautology.
 - $p \land \neg p$ is always false. It is a contradiction.
- □ Definition 1 (see page 21)
 - 1. Tautology (永真公式): A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, is called a tautology.
 - 2. Contradiction (永假公式): A compound proposition that is always false, no matter what the truth values of the propositions that occur in it, is called a contradiction.

1.Introduction(cont.)

- Definition 1 (see page 21)
 - 3. Contingency (中性公式): A proposition that is neither a tautology nor a contradiction is called a contingency.

2. Logical Equivalence

- □ Example 2 (page 22)
 - Show that $\neg(p \lor q)$ and $\neg p \land \neg q$ are logically equivalent.
 - Truth Table

р	q	p∨q	¬(p∨q)	¬р	¬q	$\neg p \land \neg q$
Т	T	Т	F	F	F	F
Т	F	Т	F	F	Т	F
F	Т	Т	F	Т	F	F
F	F	F	Т	Т	Т	T

2. Logical Equivalence (cont.)

- □ Definition 2 (logical equivalence)
 - The propositions p and q are called logically equivalent if p↔q is a tautology.
 - The notation p=q denotes that p and q are logically equivalence.

3. More Examples

- □ Example 3 (page 23)
 - Show that $p \rightarrow q$ and $\neg p \lor q$ are logically equivalence.
 - Solution: We construct the truth table for these propositions in the table below. Since the truth values of p→q and ¬p \/ q agree, these propositions are logically equivalence.

р	q	¬р	¬p ∨q	p→q
Т	Т	F	T	T
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

3. More Examples

- □ Example 4 (page 23)
 - Show that the propositions p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r) are logically equivalent.
 - **Solution:** By constructing truth table.

	р	q	r	q∧r	$p \lor (q \land r)$	$p \vee q$	p ∨r	$\begin{array}{c} (p \vee q) \wedge (p \\ \vee r) \end{array}$
	Τ	Т	Т	Т	Т	Т	Т	Т
	Т	Т	F	F	Т	Т	Т	Т
	Т	F	Т	F	T	Т	Т	Т
	Τ	F	F	F	Т	Т	Т	Т
	F	Т	Т	Т	Т	Т	Т	Т
	F	Т	F	F	F	Т	F	F
	F	F	Т	F	F	F	Т	F
Software Engineerin	F	F	F	F	F	F	F	F

- Logical Equivalence (Table a)
 - Identity laws(同一律)

1.
$$p \wedge T \equiv p$$

2.
$$p \lor F \equiv p$$

■ Domination laws(零律)

1.
$$p \lor T \equiv T$$

_{2.}
$$p \wedge F \equiv F$$

■ Idempotent laws(幂等律)

1.
$$p \lor p \equiv p$$

2.
$$p \wedge p \equiv p$$

- Logical Equivalence (Table a cont.)
 - Double negation law(双重否定律)

$$\neg (\neg p) \equiv p$$

■ Commutative laws(交換律)

1.
$$p \land q \equiv q \land p$$

2.
$$p \lor q \equiv q \lor p$$

■ Associative laws(结合律)

1.
$$(p \land q) \land r \equiv p \land (q \land r)$$

2.
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

- Logical Equivalence (Table a cont.)
 - Distributive laws(分配律)

_{1.}
$$p \lor (q \land r) \equiv (p \land r) \lor (q \land r)$$

2.
$$p \land (q \lor r) \equiv (p \lor r) \land (q \lor r)$$

■ De Morgan's laws(德·摩根律)

1.
$$\neg (p \land q) \equiv \neg p \lor \neg q$$

2.
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

■ Absorption laws(吸收律)

1.
$$p \lor (p \land q) \equiv p$$

2.
$$p \land (p \lor q) \equiv p$$

- Logical Equivalence (Table a cont.)
 - Negative laws
 - 1. p ∧ ¬ p ≡ F (矛盾律)
 - $2. p \lor \neg p \equiv T (排中律)$

- Logical Equivalence Involving Implication (Table b)
 - 蕴含等值式

1.
$$p \rightarrow q \equiv \neg p \lor q$$

■ 假言易位

1.
$$p \rightarrow q \equiv \neg q \lor \neg p$$

Others

1.
$$p \lor q \equiv \neg p \rightarrow q$$

2.
$$p \land q \equiv \neg(p \rightarrow \neg q)$$

3.
$$\neg(p \rightarrow q) \equiv p \land \neg q$$

4. Some Important Equivalences (cont)

- Logical Equivalence Involving Implication (Table b)
 - Others

4.
$$(p \rightarrow q) \land (p \rightarrow r) \equiv p \rightarrow (q \land r)$$

5.
$$(p \rightarrow r) \land (q \rightarrow r) \equiv (p \lor q) \rightarrow r$$

6.
$$(p \rightarrow q) \lor (p \rightarrow r) \equiv p \rightarrow (q \lor r)$$

7.
$$(p \rightarrow r) \lor (q \rightarrow r) \equiv (p \land q) \rightarrow r$$

- Logical Equivalence Involving Biconditionals (Table c)

 - $p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$
- Questions:
 - How to verify these equivalences?
 - Answer: One way is by constructing the truth table.

5. Extension of De Morgan's Law

- Extension of De Morgan's Law
 - $\neg(p \land q) \equiv \neg p \lor \neg q$ can be extended to

$$\neg (p_1 \land p_2 \land ... \land p_n) \equiv \neg p_1 \lor \neg p_2 \lor ... \lor \neg p_n$$

 \neg (p \lor q) $\equiv \neg$ p $\land \neg$ q can be extended to

$$\neg (p_1 \lor p_2 \lor ... \lor p_n) \equiv \neg p_1 \land \neg p_2 \land ... \land \neg p_n$$

- Example 6: Show that ¬(p → q) and p ∧ ¬q are logically equivalent. (page 26)
 - Proof

$$\neg (p \rightarrow q)$$

 $\equiv \neg (\neg p \lor q)$ by Example 3
 $\equiv \neg (\neg p) \land \neg q$ by the second De Morgan law
 $\equiv p \land \neg q$ by the double negation law

- Example 6: Show that ¬(p → q) and p ∧ ¬q are logically equivalent. (page 26)
 - 中文表达

□ Example 7: Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧¬q are logically equivalent.

Proof

$$\neg(p \lor (\neg p \land q))$$

$$\equiv \neg p \land \neg(\neg p \land q))$$

$$\equiv \neg p \land (\neg(\neg p) \lor \neg q)$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \land (\neg p \land \neg q)$$

$$\equiv F \lor (\neg p \land \neg q)$$

$$\equiv (\neg p \land \neg q) \land F$$

$$\equiv \neg p \land \neg q$$

by the second De Morgan law by the first De Morgan law by the double negation law by the second distributed law because $\neg p \land p \equiv F$ by the communicative law by the identify law for F

- □ Example 7: Show that ¬(p ∨ (¬p ∧ q)) and ¬p ∧¬q are logically equivalent.
 - 中文表达

$$\neg (p \lor (\neg p \land q))
\equiv \neg p \land \neg (\neg p \land q))
\equiv \neg p \land (\neg (\neg p) \lor \neg q)
\equiv \neg p \land (p \lor \neg q)
\equiv (\neg p \land p) \lor (\neg p \land \neg q)
\equiv F \lor (\neg p \land \neg q)
\equiv (\neg p \land \neg q)
\Rightarrow (\neg p \land \neg q)
\Rightarrow (\neg p \land \neg q)
\Rightarrow \neg p \land \neg q$$
同一律

□ Example 8: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution:

$$(p \land q) \rightarrow (p \lor q)$$

$$\equiv \neg(p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv (\neg p \lor p) \lor (\neg q \lor q)$$

$$\equiv$$
 T \vee T

$$\equiv T$$

by Example 3
by the first De Morgan law
by the associative and
communicative law for
disjunction
by example 1 and the
communicative law for
disjunction
by domination law

- □ Example 8: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
 - 中文表达:

Homework

- □ Page 28~30
 - **4**, 10, 14, 28, 30, 60