Chapter 2 Basic Structures: Sets, Functions, Sequences and Sum

2.1 Sets

Definition 1

• A set is an unordered collection of objects.

Definition 2

 The objects in a set are also called the elements or members, of the set. A set is said to contain its elements

- How to describe a set?
 - The first way: listing all the members of a set
 - Examples (page 112)
 - The set V of all vowels (元音字母) in the English alphabet: V={a, e, i, o, u}
 - The set of odd positive integers less than 10:
 O={1, 3, 5, 7, 9}
 - A set can contain some unrelated elements: {a, 2, Fred, New Jersey}
 - The set of positive integers less than 100: {1, 2, 3,, 99}
 - Some important sets (page 112~113): N, Z, Z+, Q, R

- The equation of two sets
 - Definition 3 (page 79)
 - Two sets are equal if and only if they have the same elements.
 - Example 6 (page 113)
 - $\{1, 3, 5\} = \{3, 5, 1\} = \{1, 3, 3, 3, 5, 5, 5, 5\}$

- How to describe a set?
 - The second way: Using set builder notation
 - Example
 - the set of all odd positive integers less than 10

 $O = \{x | x \text{ is an odd positive integer less than 10}\}$

- □ Venn diagram (文氏图)
 - Universal set U (全集):containing all the objects under consideration
 - Example
 - Venn diagram for the set of vowels (page 114)
 - Solution: See blackboard.

- □ Empty set (空集)
 - { } or \varnothing How about { \varnothing }?
- □ Subset (子集)
 - Definition 4 (page 114)
 - The set A is said to be a subset of B if and only if every element of A is a also an element of B. We use the notation ⊆ to indicate that A is a subset of the set B. $A \subseteq B$ iff $\forall x (x \in A \rightarrow x \in B)$

- □ Theorem 1 (page 115)
 - For any set S, (a) $\varnothing \subseteq S$ (b) S \subseteq S
- Proper subset (真子集)
 - A is a proper subset of B if and only if A is a subset of B but that $A \neq B$.
 - The notation: A⊂B
- One way to show that two sets are equal
 - A=B iff $A\subseteq B$ and $B\subseteq A$

- Cardinality (基数)
 - Definition 5 (page 116)
 - Let S be a set. If there are exactly n distinct elements in S where n is nonnegative integer, we say that S is a finite set and that n is the cardinality of S. The cardinality of S is denoted by |S|.
 - Example 9 (page 116)
 - Let A be the set of odd positive integers less than 10. Then |A|=5.

- Definition 6 (page 116)
 - A set is said to be infinite if it is not finite.
- □ Example12 (page 116)
 - The set of positive integers is infinite.

- 2. The Power Set (幂集)
- Definition 7 (page 116)
 - Given a set S, the power set of S is the set of all subsets of the set S. The power set of S is denoted by P(S).
- Example 13
 - What is the power set of {0, 1, 2}?
 Solution: See page 116.
 - What is power set of the empty set?
 - What is the power set of the set {∅}?
 - **D** Solution: See page 117.

- 3. Cartesian product (笛卡儿乘积)
- □ Ordered n-tuple (a1, a2,, an)
 - Definition 8 (page 117)
 - The ordered n-tuple (a₁, a₂,, a_n) (有序n 元组) is the ordered collection that has a₁ as its first element, a₂ as its second element, ..., a_n as its nth element.
 - Equality of two ordered n-tuples

 $(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n)$ iff $a_i = b_i$ for $i=1,2,\dots,n$

3. Cartesian product (笛卡儿乘积)

Cartesian product of two sets

- $\bullet A \times B = \{ (a,b) \mid a \in A \land b \in B \}$
- Example 16 (page 118)
 - **a** $A = \{1, 2\}$ and $B = \{a, b, c\}$
 - \blacksquare How about A×B and B×A?

– Solution: See page 118.

3. Cartesian product (笛卡儿乘积)

 \Box Cartesian product of A₁, A₂,, A_n

•
$$A_1 \times A_2 \times \dots \times A_n =$$

{ $(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i=1, 2, \dots, n$ }

□ Example 18 (page 118)

- $A = \{0, 1\}$
- B={1,2}
- $C = \{0, 1, 2\}$
- How about A×B×C?

4 Using set notation with quantifiers

- □ $\forall x \in S P(x) \dots \forall x (x \in S \rightarrow P(x))$
- □ $\exists x \in S P(x) \dots \exists x (x \in S \land P(x))$

□ Example 19 (page 119)

- What do the statements ∀x∈R (x2≥ 0) and ∃x∈Z (x2≥ 1) mean?
- Solution: See book.

Homework

- □ page 119~121
 - **4**, 8, 18, 20, 22, 28, 34