Chapter 2
 Basic Structures: Sets, Functions, Sequences and Sum

2.1 Sets

1．Introduction

－Definition 1
－A set is an unordered collection of objects．
－Definition 2
－The objects in a set are also called the elements or members，of the set．A set is said to contain its elements

1．Introduction

－How to describe a set？
－The first way：listing all the members of a set
－Examples（page 112）
－The set V of all vowels（元音字母）in the English alphabet： $\mathrm{V}=\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}\}$
－The set of odd positive integers less than 10： $O=\{1,3,5,7,9\}$
－A set can contain some unrelated elements： \｛a，2，Fred，New Jersey \}
－The set of positive integers less than 100：\｛1，2， 3，．．．．．，99\}
－Some important sets（page 112～113）：N，Z，Z＋， Q，R

1．Introduction

－The equation of two sets
Definition 3 （page 79）
－Two sets are equal if and only if they have the same elements．
－Example 6 （page 113）
$-\{1,3,5\}=\{3,5,1\}=\{1,3,3,3,5,5,5,5\}$

1．Introduction

－How to describe a set？
－The second way：Using set builder notation
－Example
－the set of all odd positive integers less than 10 $\mathrm{O}=\{\mathrm{x} \mid \mathrm{x}$ is an odd positive integer less than 10\}

- Venn diagram（文氏图）
- Universal set U（全集）：containing all the objects under consideration
－Example
－Venn diagram for the set of vowels（page 114）
－Solution：See blackboard．

1．Introduction

－Empty set（空集）
－$\}$ or \varnothing How about $\{\varnothing$ \}?
－Subset（子集）
－Definition 4 （page 114）
－The set A is said to be a subset of B if and only if every element of A is a also an element of B ．We use the notation \subseteq to indicate that A is a subset of the set B ． $A \subseteq B$ iff $\forall x(x \in A \rightarrow x \in B)$

1．Introduction

－Theorem 1 （page 115）
－For any set S ，（a）$\varnothing \subseteq S \quad$（b）$S \subseteq S$
－Proper subset（真子集）
－A is a proper subset of B if and only if A is a subset of B but that $A \neq B$ ．
－The notation：$A \subset B$
－One way to show that two sets are equal －$A=B$ iff $A \subseteq B$ and $B \subseteq A$

1．Introduction

－Cardinality（基数）
－Definition 5 （page 116）
－Let S be a set．If there are exactly n distinct elements in S where n is nonnegative integer， we say that S is a finite set and that n is the cardinality of S ．The cardinality of S is denoted by｜S｜．
－Example 9 （page 116）
－Let A be the set of odd positive integers less than 10．Then $|A|=5$ ．

1．Introduction

－Definition 6 （page 116）
－A set is said to be infinite if it is not finite．
－Example12（page 116）
－The set of positive integers is infinite．

2．The Power Set（幂集）

－Definition 7 （page 116）
－Given a set S，the power set of S is the set of all subsets of the set S ．The power set of S is denoted by $\mathrm{P}(\mathrm{S})$ ．
－Example 13
－What is the power set of $\{0,1,2\}$ ？
－Solution：See page 116.
－What is power set of the empty set？
－What is the power set of the set $\{\varnothing\}$ ？
－Solution：See page 117.

3．Cartesian product（笛卡儿乘积）
－Ordered n－tuple（a1，a2，．．．．．，an）
－Definition 8 （page 117）
－The ordered n－tuple（ $a_{1}, a_{2}, \ldots . ., a_{n}$ ）（有序 n元组）is the ordered collection that has a_{1} as its first element，a_{2} as its second element，\ldots, a_{n} as its nth element．
a Equality of two ordered n－tuples

$$
\begin{aligned}
& \left(a_{1}, a_{2}, \ldots ., a_{n}\right)=\left(b_{1}, b_{2}, \ldots ., b_{n}\right) \text { iff } a_{i}=b_{i} \\
& \text { for } i=1,2, \ldots ., n
\end{aligned}
$$

3．Cartesian product（笛卡儿乘积）
－Cartesian product of two sets
－$A \times B=\{(a, b) \mid a \in A \wedge b \in B\}$
－Example 16 （page 118）
－$A=\{1,2\}$ and $B=\{a, b, c\}$
－How about $A \times B$ and $B \times A$ ？
－Solution：See page 118.

3．Cartesian product（笛卡儿乘积）
－Cartesian product of $A_{1}, A_{2}, \ldots . ., A_{n}$
－$A_{1} \times A_{2} \times \ldots . . \times A_{n}=$
$\left\{\left(a_{1}, a_{2}, \ldots ., a_{n}\right) \mid a_{i} \in A_{i}\right.$ for $\left.i=1,2, \ldots, n\right\}$
－Example 18 （page 118）
－$A=\{0,1\}$
－$B=\{1,2\}$
－$C=\{0,1,2\}$
－How about $A \times B \times C$ ？

4 Using set notation with quantifiers

a $\forall x \in S P(x)------\forall x(x \in S \rightarrow P(x))$
－$\exists x \in S P(x)$－－－－－－$\exists x(x \in S / \backslash P(x))$
－Example 19 （page 119）
－What do the statements $\forall x \in R(x 2 \geqslant 0)$ and $\exists x \in Z(x 2 \geqslant 1)$ mean？
－Solution：See book．

Homework

－page 119～121
－ $4,8,18,20,22,28,34$

