Chapter 2

Basic Structures: Sets, Functions,
Sequences and Sum

2.3 Functions



1. Introduction

a What is function?

= Definition 1 (page 133)

o Let A and B be sets. A function from A to B is an
assignment of exactly one element of B to each

element of A.

o We write f(a)=Db if b is the unique element of B
assigned by the function f to the element a of A.

o If fis a function from A to B, we write f:A—B.

= Example (page 133)

o Assignment of Grades in a Discrete Mathematics
Class
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1. Introduction

a2 Domain (& X)), codomain (3ti) and
range ({H1)
= Definition 2 (page 134)

o If fis a function from A to B, we say that A
IS the domain of f and B is the codomain of f

o If f(a)=Db, we say that b is the image (1%) of
a and a is a pre-image (J#1%) of b.

o The range of f is the set of all images of
elements of A. Also, if f iIs a function from A

to B, we say f maps A to B.
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1. Introduction

o Example 3 (page 135)

m Let f: Z—Z assign the square of an integer to this
Integer, i.e., f(X)=x2.

=  What is the domain, codomain and range of
function f ?

s Solution: See book

0 Definition 3 (page 135)

= Letf, and f, be functions from A to R. Then f +f,
and f, f, are also functions from A to R defined by

1. (f; +5L)(x) =, (X) + f,(X)
2.  (fy 1) (X) = f(xy) f(X,)
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1. Introduction

o Example 6 (page 135)
= Letf, and f, be functions from R to R such
that f; (X)=x2 and f; (X)=x-x? .
= What are the functions f; +f, and f; f, ?
= Solution: See blackboard.
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1. Introduction

a Definition 4 (page 136)

= Let f be a function from the set A to the set B and
let S be a subset of A. The image of S is the
subset of B that consists of the images of the
elements of S.

= The notation: f(S) = { f(s) | s€S }
o Example 7 (page 136)
= A={a, b,c,d, e}
= B={1,2,3,4}
n f(@a)=2, f(b)=1, f(c)=4, f(e)=1
n S:{b, C, d}
o What is f(S)?
o Solution: See book.
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2. One-to-one and Onto functions

a One-to-one function (or injective, F.)

= Definition 5 (page 136)

o A function f is said to be one-to-one, if and only if
f(xX)=f(y) implies that x=y for all x and y in the
domain of f.

o A function is said to be an injection if it is one-to-
one.

s Examples (pages 136-137)
o Example 8

o Determine whether the function f from {a,b,c,d} to
{1,2,3,4,5} with f(a)=4, f(b)=5, f(c)=1, and f(d)=3
IS one to one.

o Solution: Function f is one-to-one.
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2. One-to-one and Onto functions

a One-to-one function (or injective, F.5))

» Examples (pages 136-137)
oExample 9

o Determine whether the function f(x)=x?
from the set of integers to the set of
Integers is one-to-one.

o Solution: No

oHowever, If the domain is Z+, then f Is one-
to-one.
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2. One-to-one and Onto functions

a One-to-one function (or injective, F.5))

» Examples (pages 136-137)
oExample 10

o Determine whether the function f(xX)=x+1 Is
one to one.

o Solution: Yes.
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2. One-to-one and Onto functions

0 Some conditions that guarantee that a
function is one to one (page 137)

s Definition 6 (strictly increasing or
descreasing function)

oA function f whose domain and codomain
are subset of the set of real numbers is
called strictly increasing if f(x)<f(y)
whenever x<y and x and y are In the
domain of f.

ostrictly descreasing?
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2. One-to-one and Onto functions

0 Some conditions that guarantee that a
function is one to one (page 137)

s Definition 6 (strictly increasing or
descreasing function)

olf a function iIs either strictly increasing or
strictly decreasing, it must be one to one.
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2. One-to-one and Onto functions

0 Onto (or surjective function, ¥#57)

= Definition 7 (page 137)

o A function f from A to B is called onto, or
surjective, If and only if for every element
beB there is an element a€ A with f(a)=Db.

ofunction f is called a surjection If it is onto.
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2. One-to-one and Onto functions

0 Examples (page 138)

x» Example 11

oLet f be the function from {a,b,c,d} to
{1,2,3} defined by f(a)=3, f(b)=2, f(c)=1,
and f(d)=3.Is f an onto function?

o Solution: Yes.

oHow about the answer If the codomain is
{1,2,3,4}7
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2. One-to-one and Onto functions

0 Examples (page 138)

» Example 12

ols the function f(x)=x2 from the set of
Integers to the set of integers onto?

o Solution: No.
» Example 13

ols the function f(x)=x+1 from the set of
Integers to the set of integers onto?

o Solution: Yes.
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2. One-to-one and Onto functions

o One-to-one correspondence (or bijection, ——X}
N, BT
s Definition 9 (page 138)

o The function f is one-to-one correspondence or a
bijection if it is both one-to-one and onto.

s Example 14 (page 138)

o Let f be the function from {a,b,c,d} to {1,2,3,4}
with f(a)=4, f(b)=2, f(c)=1, and f(d)=3. Is f a
bijective?

o Solution: Yes.
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2. One-to-one and Onto functions

a Identity function ({E2% %50
= Let A be a set. The identity function on A
s I, A=A where 1,(X)=X
= Where X€A.
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4. Inverse functions and compositions of functions

0 Introduction

= Consider a one-to-one correspondence f from the
set A to the set B.

= Since f iIs an onto function, every element of B is
the image of some element in A.

s Because f is also one-to-one, every element of B
IS the Image of a unigue element of A.

= Therefore, we can define a new function from B to
A that reverse the correspondence given by f.
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4. Inverse functions and compositions of functions

o Definition 9 (inverse function, page 140)

= Let f be a one-to-one correspondence from the
set A to the set B. The inverse function of f is the
function that assigns to an element b belonging to
B the unique element a such that f(a)=Db.

= The inverse function of f is denoted by .
= Hence f-1(b)=a when f(a)=b
0 Please note:

= If f IS not a one-to-one correspondence, we
cannot define an inverse function of f.
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4. Inverse functions and compositions of functions

0 Examples (page 140)

= Example 16

o Let f be a function from {a,b,c} to {1,2,3} such
that f(a)=2, f(b)=3, and f(c)=1. Is f invertible, and
If it Iis, what is its inverse?

— Solution: Yes.

o Let f be the function from the set of integers to the
set of integers such that f(x)=x+1. Is f invertible,
and If it is, what is its inverse?

— Solution: Yes.
—fi(y)=y?
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4. Inverse functions and compositions of functions

0 Examples (page 140)

= Example 18

o Let f be the function from R to R with f(x)=x2. Is f
Invertible?

o Solution: Since f(1)=f(-1)=1, f is not one to one.
Hence, f is not invertible.

o R f [REWF: fis the function from the set of all
nonnegative real numbers to the set of all
nonnegative real numbers, 4 : f1(y)=sqrt(y)
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4. Inverse functions and compositions of functions

a Definition 10 (composition of two functions, A%k

2A)

m Let g be a function from the set A to the set B and
let f be a function from the set B to the set C. The
composition of the function f and g, denoted by

fog, Is defined by
(feg)(a) = f(g(a))
0 Please note:

s For the direct explanation, please see page 141
(Figure 7).
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4. Inverse functions and compositions of functions

0 Examples

= Let g be the function from the set {a,b,c} to itself
such that g(a)=Db, g(b)=c, and g(c)=a.

s Let f be the function from the set {a,b,c} to the
set {1,2,3} such that f(a)=3, f(b)=2, and f(c)=1.

o What is the composition of f and g, and what is the
composition of g and f?

o Solution: See balckboard.
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4. Inverse functions and compositions of functions

0 Examples

» Let f and g be the function from the set of
Integers to the set of integers defined by

f(X)=2x+3 and g(x)=3x+2.
o What is the composition of f and g?
o What is the composition of g and f?
o Solution: See blackboard.
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4. Inverse functions and compositions of functions

0 Remark:

= Note that even if fog and g-f are defined for
functions f and g in Example 20, f-g and g-f are
not equal.

= In other words, the commutative law does not
hold for the composition of functions
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4. Inverse functions and compositions of functions

o The composition of a function and its inverse
function (page 11)41

» If f2A—B and f is a one-to-one correspoendence,
then (i) f-1 -f=1i, and f--f-1=i;
(i) (f-1) -1 =1¢
= Why?
s Please explain (page 104).
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5. The graph of functions

0o Definition 11 (page 142)

s Le f be the function from the set A to the set B.
The graph of the function f is the set of ordered

pairs
{ (a,b) | a€A and f(a)=Db }.
0 Examples (page 142)

» Example 22

s Display the graph of the function f(n)=2n+1 from
the set of integers to the set of integers.

s Solution: Please see book.
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5. The graph of functions

0 Example 23

= Display the graph of the function f(x)=x2 from
the set of integers to the set of integers.

s Solution: Please see book.
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6. Some important functions

o Definition12 (floor function and ceiling function)

= The floor function assigns to the real numbers x
the largest integer that is less than or equal to Xx.
The value of the floor function at x is denoted by
LX .

= The ceiling function assigns to the real number x
the smallest integer that is greater than or equal
to x. The value of the ceiling function at x is
denoted by rx7.
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6. Some important functions

o Example 24 (page 143)
= These are some values of the floor and ceiling functions.

L 0.5, =7 r0.57=? _-0.5,=? r-0.57 ="

|_3.1_| =7 r3.17 =7 Ll =7 /1 =?
s Useful properties of the floor and ceiling function
(page 143)

1. (1la) xu=nif and only If ns<x<n+1

2. (1b) ™x» = nif and only if n-1<x < n+1
3. (1c) xu=nifandonly if x-1<n < x

2. (1d) ™x7 = nif and only If X< n<x+1
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6. Some important functions

o Example 27 (page 145)
» Prove that if x is a real number, then

L2X, = X4+ X+0.5,
x  Solution: See book.

0 Example 28 (page 145)

= Prove or disprove that mx+yq = X7 + ryq
for all real numbers x and vy.

= Solution: This statement is false.
Counterexample: x=0.5 and y=0.5
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6. Some important functions

a The factorial function
s f: N—Z*
= f(nN)=n!
o i.e., f(n) = 1X2X..X (n-1) Xn (and f(0)=0!=1)
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Homework

a0 Page 146—149

«» 10, 12, 16, 18, 20, 26, 30, 31, 32, 38,
40, 66
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