
Chapter 2
Basic Structures: Sets, Functions, 
Sequences and Sum

2.3 Functions
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1. Introduction
What is function?

Definition 1 (page 133)
Let A and B be sets. A function from A to B is an 
assignment of exactly one element of B to each 
element of A.

We write f(a)=b if b is the unique element of B 
assigned by the function f to the element a of A. 

If f is a function from A to B, we write f:A→B.

Example (page 133)
Assignment of Grades in a Discrete Mathematics 
Class
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1. Introduction
Domain (定义域), codomain (共域) and 
range (值域)

Definition 2 (page 134)
If f is a function from A to B, we say that A 
is the domain of f and B is the codomain of f

If f(a)=b, we say that b is the image (像) of 
a and a is a pre-image (原像) of b.

The range of f is the set of all images of 
elements of A. Also, if f is a function from A 
to B, we say f maps A to B.
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1. Introduction
Example 3 (page 135)

Let f: Z→Z assign the square of an integer to this 
integer, i.e., f(x)=x2. 

What is the domain, codomain and range of 
function f ?

Solution: See book

Definition 3 (page 135)
Let f1 and f2 be functions from A to R. Then f1+f2
and f1 f2 are also functions from A to R defined by 

1. (f1 +f2)(x) = f1 (x) + f2(x)

2. (f1 f2)(x) = f(x1) f(x2)
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1. Introduction
Example 6 (page 135)

Let f1 and f2 be functions from R to R such 
that f1 (x)=x2 and f1 (x)=x-x2 .

What are the functions f1 +f2 and f1 f2 ?

Solution: See blackboard.
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1. Introduction
Definition 4 (page 136)

Let f be a function from the set A to the set B and 
let S be a subset of A. The image of S is the 
subset of B that consists of the images of the 
elements of S.
The notation: f(S) = { f(s) | s∈S }

Example 7 (page 136)
A={a, b, c, d, e}
B={1,2,3,4}
f(a)=2,  f (b)=1,  f(c)=4, f(e)=1
S={b, c, d}

What is f(S)?
Solution: See book.
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2. One-to-one and Onto functions
One-to-one function (or injective, 单射)

Definition 5 (page 136)
A function f is said to be one-to-one, if and only if 
f(x)=f(y) implies that x=y for all x and y in the 
domain of f.
A function is said to be an injection if it is one-to-
one.

Examples (pages 136-137)
Example 8
Determine whether the function f from {a,b,c,d} to 
{1,2,3,4,5} with f(a)=4, f(b)=5, f(c)=1, and f(d)=3 
is one to one.
Solution: Function f is one-to-one.
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2. One-to-one and Onto functions
One-to-one function (or injective, 单射)

Examples (pages 136-137)
Example 9

Determine whether the function f(x)=x2

from the set of integers to the set of 
integers is one-to-one.

Solution: No

However, if the domain is Z+, then f is one-
to-one.
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2. One-to-one and Onto functions
One-to-one function (or injective, 单射)

Examples (pages 136-137)
Example 10

Determine whether the function f(x)=x+1 is 
one to one.

Solution: Yes.
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2. One-to-one and Onto functions
Some conditions that guarantee that a 
function is one to one (page 137)

Definition 6  (strictly increasing or 
descreasing function)

A function f whose domain and codomain
are subset of the set of real numbers is 
called strictly increasing if f(x)<f(y) 
whenever x<y and x and y are in the 
domain of f.

strictly descreasing?



Software Engineering Mathematics                                SEI of ECNU 版权所有© 11

2. One-to-one and Onto functions
Some conditions that guarantee that a 
function is one to one (page 137)

Definition 6  (strictly increasing or 
descreasing function)

If a function is either strictly increasing or 
strictly decreasing, it must be one to one.
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2. One-to-one and Onto functions
Onto (or surjective function, 满射)

Definition 7 (page 137)
A function f from A to B is called onto, or 
surjective, if and only if for every element 
b∈B there is an element a∈A with f(a)=b.

function f is called a surjection if it is onto.
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2. One-to-one and Onto functions
Examples (page 138)

Example 11
Let f be the function from {a,b,c,d} to 
{1,2,3} defined by f(a)=3, f(b)=2, f(c)=1, 
and f(d)=3.Is f an onto function?

Solution: Yes.

How about the answer if the codomain is 
{1,2,3,4}?
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2. One-to-one and Onto functions
Examples (page 138)

Example 12
Is the function f(x)=x2 from the set of 
integers to the set of integers onto?

Solution: No.

Example 13
Is the function f(x)=x+1 from the set of 
integers to the set of integers onto?

Solution: Yes.   
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2. One-to-one and Onto functions
One-to-one correspondence (or bijection, 一一对
应, 双射)

Definition 9 (page 138)
The function f is one-to-one correspondence or a 
bijection if it is both one-to-one and onto.

Example 14 (page 138)
Let f be the function from {a,b,c,d} to {1,2,3,4} 
with f(a)=4, f(b)=2, f(c)=1, and f(d)=3. Is f a 
bijective?

Solution: Yes.
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2. One-to-one and Onto functions
Identity function (恒等函数)

Let A be a set. The identity function on A

iA: A→A where iA(x)=x

where x∈A.
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4. Inverse functions and compositions of functions 

Introduction
Consider a one-to-one correspondence f from the 
set A to the set B.
Since f is an onto function, every element of B is 
the image of some element in A.
Because f is also one-to-one, every element of B 
is the image of a unique element of A.
Therefore, we can define a new function from B to 
A that reverse the correspondence given by f.



Software Engineering Mathematics                                SEI of ECNU 版权所有© 18

4. Inverse functions and compositions of functions 

Definition 9 (inverse function, page 140)
Let f be a one-to-one correspondence from the 
set A to the set B. The inverse function of f is the 
function that assigns to an element b belonging to 
B the unique element a such that f(a)=b.
The inverse function of f is denoted by f-1.
Hence f-1(b)=a when f(a)=b

Please note:
if f is not a one-to-one correspondence, we 
cannot define an inverse function of f.
(why??????????, please see page 140.)
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4. Inverse functions and compositions of functions 

Examples (page 140)
Example 16

Let f be a function from {a,b,c} to {1,2,3} such 
that f(a)=2, f(b)=3, and f(c)=1. Is f invertible, and 
if it is, what is its inverse?

– Solution: Yes.
Let f be the function from the set of integers to the 
set of integers such that f(x)=x+1. Is f invertible, 
and if it is, what is its inverse?

– Solution: Yes.
– f-1(y)=y-1
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4. Inverse functions and compositions of functions 

Examples (page 140)
Example 18

Let f be the function from R to R with f(x)=x2. Is f 
invertible?

Solution: Since f(1)=f(-1)=1, f is not one to one. 
Hence, f is not invertible.

如果 f 限定如下：f is the function from the set of all 
nonnegative real numbers to the set of all 
nonnegative real numbers,那么：f-1(y)=sqrt(y)
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4. Inverse functions and compositions of functions 

Definition 10 (composition of two functions, 函数
复合)

Let g be a function from the set A to the set B and 
let f be a function from the set B to the set C. The 
composition of the function f and g, denoted by 
f◦g, is defined by

(f◦g)(a) = f(g(a))

Please note:
For the direct explanation, please see page 141 
(Figure 7).
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4. Inverse functions and compositions of functions 

Examples
Let g be the function from the set {a,b,c} to itself 
such that g(a)=b, g(b)=c, and g(c)=a.

Let f be the function from the set {a,b,c} to the 
set {1,2,3} such that f(a)=3, f(b)=2, and f(c)=1.

What is the composition of f and g, and what is the 
composition of g and f?

Solution: See balckboard.
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4. Inverse functions and compositions of functions 

Examples
Let f and g be the function from the set of 
integers to the set of integers defined by

f(x)=2x+3 and g(x)=3x+2.
What is the composition of f and g?      

What is the composition of g and f?

Solution: See blackboard.
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4. Inverse functions and compositions of functions 

Remark:
Note that even if f◦g and g◦f are defined for 
functions f and g in Example 20, f◦g and g◦f are 
not equal.

In other words, the commutative law does not 
hold for the composition of functions



Software Engineering Mathematics                                SEI of ECNU 版权所有© 25

4. Inverse functions and compositions of functions 

The composition of a function and its inverse 
function (page 11)41

If f:A→B and f is a one-to-one correspoendence,

then  (i)  f-1 ◦f = iA and   f ◦f -1 = iB
(ii) (f-1) -1 = f

Why?

Please explain (page 104).
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5. The graph of functions

Definition 11 (page 142)
Le f be the function from the set A to the set B. 
The graph of the function f is the set of ordered 
pairs

{ (a,b) | a∈A and f(a)=b }.

Examples (page 142)
Example 22

Display the graph of the function f(n)=2n+1 from 
the set of integers to the set of integers.

Solution: Please see book.
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5. The graph of functions

Example 23
Display the graph of the function f(x)=x2 from 
the set of integers to the set of integers.

Solution: Please see book.
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6. Some important functions
Definition12 (floor function and ceiling function)

The floor function assigns to the real numbers x 
the largest integer that is less than or equal to x. 
The value of the floor function at x is denoted by 
└x┘.

The ceiling function assigns to the real number x 
the smallest integer that is greater than or equal 
to x. The value of the ceiling function at x is 
denoted by ┌x┐.
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6. Some important functions
Example 24 (page 143)

These are some values of the floor and ceiling functions.

└0.5┘=?   ┌0.5┐=?  └-0.5┘=?   ┌-0.5┐=?

└3.1┘=?   ┌3.1┐=?  └7┘=?       ┌7┐=?

Useful properties of the floor and ceiling function 
(page 143)

1. (1a) └x┘= n if and only if n≤x<n+1

2. (1b) ┌x┐ = n if and only if n-1<x ≤ n+1

3. (1c) └x┘= n if and only if x-1<n ≤ x

4. (1d) ┌x┐ = n if and only if x≤ n<x+1

5. and ………………



Software Engineering Mathematics                                SEI of ECNU 版权所有© 30

6. Some important functions
Example 27 (page 145)

Prove that if x is a real number, then 

└2x┘= └x┘+ └x+0.5┘

Solution: See book.

Example 28 (page 145)
Prove or disprove that┌x+y┐= ┌x┐+ ┌y┐
for all real numbers x and y.

Solution: This statement is false.    
Counterexample:  x=0.5 and y=0.5
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6. Some important functions
The factorial function

f: N→Z+

f(n)=n!
i.e., f(n) = 1×2×…× (n-1) ×n (and f(0)=0!=1)
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Homework

Page 146~149
10, 12, 16, 18, 20, 26, 30, 31, 32, 38, 
40, 66
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