
Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 5

Adaptation of Process Models – A Semantic-based Approach
Thomas Eisenbarth
Programming Distributed Systems Lab
University of Augsburg
Augsburg, Germany
eisenbarth@ds-lab.org

Florian Lautenbacher
Programming Distributed Systems Lab
University of Augsburg
Augsburg, Germany
lautenbacher@ds-lab.org

Bernhard Bauer
Programming Distributed Systems Lab
University of Augsburg
Augsburg, Germany
bauer@ds-lab.org

Semantic Business Process Management is an emerging research area to support enterprises
achieving economic and strategic objectives and improving their daily business. However, the
magnitude of changes which are required for models that capture the business processes is a
challenge today. The necessity to change process models in order to stay synchronized with the
reality is due to changing requirements within enterprises or external events like mergers and
acquisitions, changing laws and reactions to changing markets. The approach we describe in this
paper shows a way to automatically adapt existing process models when parts of a process have
changed. We apply semantic technologies to the automatic planning approach for the adaptation.

Categories and Subject Descriptors: D.2.2 (Software Engineering): Design Tools and Techniques;
D.2.13 (Software Engineering): Reusable Software – Reuse models; H.4.1 (Information Systems):
Automation – Workflow Management

Manuscript received: 28 February 2010
Communicating Editor: Georg Grossmann

Copyright© 2011, Australian Computer Society Inc. General permission to republish, but not for profit, all or part of this
material is granted, provided that the JRPIT copyright notice is given and that reference is made to the publication, to its
date of issue, and to the fact that reprinting privileges were granted by permission of the Australian Computer Society Inc.

1. INTRODUCTION
Business Process Management (BPM) has been one of the main topics in commercial information
technology for many years and is becoming even more important today. Formally defined process
models establish the basis for automatic execution of processes in enterprises. This becomes
increasingly important in business competition because of the possibility to gain shorter time to
market, increased customer satisfaction, changing laws and so on. But the graphical modeling of
business processes and their execution in software requires so much human work that the software
life-cycles can hardly comply with the fast changing demands of today’s global markets. Even
though techniques like model transformation enable the generation of low level implementation

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 5

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 20116

code, it is common to change only the implementation level. Process models get outdated this way
and become worthless after a while.

These demands require that processes in a company as well as between several companies need
to be adapted frequently. Since the process models are adapted by hand, which is a time-consuming
job, a mechanism to automatically adapt process models is required when the process that is
executed has been changed or the implementation has been modified. With such an automatic adap -
tation a business analyst only needs to review the computed models and can save time and money.

The research area of Semantic Business Process Management (SBPM) (Hepp et al, 2005)
transfers the concepts and technologies of the Semantic Web to BPM. Thereby, it aims to achieve a
higher level of automation regarding the querying, manipulation, and management of business
processes and the usage and development of corresponding process descriptions. This requires a
machine-accessible representation of the terms used in process descriptions and queries. In the
context of process modeling this means that the terms in process models are technically described
with concepts of an ontology. Using these semantic annotations an automated planning of the
control flow of process models is possible as introduced in Henneberger et al (2008).

In this paper we build on this automatic planning and introduce an approach for the adaptation
of existing process models using semantic technologies. When process actions have been changed
(either in their implementation as e.g. discovered by process mining techniques, or as stated by a
manage ment decision), the actions need to be identified in all process models and automatically
adapted.

The contribution of this paper is a framework for an automatic adaptation of process models
which is indispensable for enterprises that consider to be exposed to intense competition.

There are several variants of possible necessary adaptation. Beginning with the substitution of
a complete process model by a re-planned version as an extensive adaptation method, there are
more fine-grained ones, such as adaptation of single process actions. As we are interested in
adapting only parts of a model, our approach expects a set of process actions that require adaptation.

The adaptation process first searches through all process models for process actions that have
been changed. For these process actions the surrounding process fragments are identified. After
these steps that are syntax-based only, we now utilize the specified semantic annotations and
compute the start state and end state of these fragments which are needed in the following planning
step. The planner computes a complete process model from the start state to the end state
considering all process actions which are stored in a process library. The result of the planner is
integrated into the process model and validated afterwards.

The remainder of this paper is organized as follows. In Section 2 we summarize some basics
about (semantic) business process modeling and the automated planning of process models using
our planner SEMPA. Section 3 describes the tasks that are necessary in order to adapt an existing
process model which is exemplified in a case study in Section 4. We name some related work in
Section 5, before we conclude with directions for further research.

2. AUTOMATIC PLANNING OF PROCESS MODELS
For the automatic planning of new process models as well as the adaptation of existing models we
are only interested in the control flow perspective of a process (van der Aalst et al, 2003). Other
perspectives normally related to process models (roles, applications, etc.) are neglected in this
paper, but could easily be integrated.

We describe a process (or workflow) model formally as a directed graph G which is denoted by
(N, E), where N is the set of nodes and E the set of edges. N consists of the disjoint subsets: Nstart,

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 6

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 7

Nstop, Naction, Nfork, Njoin, Ndecision and Nmerge. The terms action, decision, etc. are thereby used in
analogy to UML activity diagrams (OMG, 2007).

Each node n ∈ N has a set of incoming and outgoing edges denoted as Ein(n) and Eout(n)
respectively. Furthermore, the graph G has to satisfy the following conditions:

• Nstart (resp. Nstop) has exactly one element nstart (resp. nstop), such that |Ein(nstart)| = 0 ∧
|Eout(nstart)| = 1 (called entry edge eentry) and |Eout(nstop)| = 0 ∧ | Ein(nstop)| = 1 (called exit edge
eexit).

• ∀n ∈ (Nfork ∪ Ndecision): |Ein(n)| = 1 ∧ |Eout(n)|> = 2, ∀n ∈ (Njoin ∪ Nmerge): |Ein(n)| > = 2 ∧ |Eout(n)|
= 1 and ∀n ∈ Naction: | Ein(n)| = 1 ∧ |Eout(n)| = 1.

• ∀n ∈ N : ∃ path p = (nstart, …,nstop) ⊆ G: n ∈ p (all nodes are reachable from the start).

As pointed out in Thomas and Fellmann (2007), the semantics of meta-model elements for
process modeling and their relations are defined already by well established approaches for process
modeling. However, the terms used to specify individual model elements (e.g. the name of a
particular function or the name of an input parameter) and their semantics are still left to the
modeler. It is quite common that different people tend to use different terms for the same real world
concepts. Problems in comprehension or ambiguities are the consequence of inconsistently used
terms in these models which makes them difficult to understand.

By means of ontologies, terms in process models are conceptualized and their relations are
technically defined. This allows for an advanced and automatic processing of semantically
annotated process models and their elements.

A Semantic Business Process Model describes a set of activities including their functional,
behavioural, organizational, operational as well as non-functional aspects. These aspects are not only
machine-readable, but also “machine understandable” i.e. that they are either semantically anno tated
or already in a form which allows a computer to infer new facts using the underlying ontology.

We define semantic annotation formally as a function that returns a set of concepts from the
ontology for each node and edge in the graph, SemAn : N ∪ E → COnts. SemAn describes all kind of
semantic annotations which can be input, output, metamodel annotation, etc. The semantic
annotation can either be done manually or computed automatically considering word similarities,
etc. We can now define a semantic annotated graph Gsem = (Nsem, Esem, Onts) with Nsem = {(n,
SemAn(n))|n ∈ N} and Esem = {(nsem, n�sem) |nsem = (n, SemAn(n))∧n�sem = (n�, SemAn(n�))∧(n, n�) ∈
E}. COnts is a set of concepts of (possibly different) ontologies of the set of ontologies Onts (COnts

⊆ Onts).
An ontology Ont ∈ Onts is a “(formal) explicit specification of a (shared) conceptualization”

(Gruber, 1993) and in our context defined as a quadruple Ont := (C, R, I, A) which consists of
different classes C and relations R between them. A relation connects a class either with another
class or with a fixed literal. It can define subsumption hierarchies between classes or other
relationships. Additionally, classes can be instantiated with a set of individuals I. An ontology might
also contain a set of axioms A which state facts (what is true) in a domain. Please note that (Gruber,
1993) actually speaks of “classes, relations, functions and other objects”, whereby current
languages of the semantic web such as OWL (Grau et al, 2008) also include individuals and axioms.

In SEMPRO, a project funded by the German Research Foundation, a (semi-)automatic creation
of process models with AI planning algorithms is envisioned which uses these semantic annotated
process actions. We speak of semiautomated because the planned process models (which are created
fully automatically) are considered as proposals that afterwards need to be assessed by an expert
regarding business aspects.

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 7

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 20118

For the automatic planning of process models we require that each node n ∈ N is at least
annotated with some kind of semantic input and output data. SemIn(n) : Nsem → COnts (SemOut(n)
analogous) is a filter function on the semantic annotation (SemAn(n)) to return only the input (resp.
output) data. Using semantic annotation allows us to exploit advantages such as e.g. checking for
equivalence of concepts, inference techniques and so on.

Therefore, we use parameters that are defined as (label, domain, restriction) for each input and
output. All possible parameters constitute the set of parameters P. The label provides the name of this
parameter and the domain specifies the ontological class that is the basis. Each semantic input or output
similar to Degwekar et al (2007) can be further refined by restrictions in order to specify spec ific
values (e.g. an order has been submitted, true, etc.) or ranges (e.g. order amount between 0 and 500).

The developed planning algorithm SEMPA (SEMantic-based Planning Approach) proceeds in
three steps. First, each semantic input SemIn and output SemOut of all process actions stored in a
process library (called libA) are semantically matched (recursively, starting with one or more
specified goal parameters) and dependencies between them are calculated and stored for the
following steps. The matching between parameters uses reasoning on the ontology concepts and
additionally considers the restrictions in order to evaluate whether two parameters SemIn(ni) vs.
SemOut(nj)) match completely, partial or not at all.

Goal parameters belong to a state that shall be reached at the end with one or more goal states
being defined. Each parameter in a goal state must be fulfilled by the SemOut(n) of precedent
process actions or by parameters that are part of the initial state.

In the second step a forward-search collects all applicable process actions from the stored graph
that can help to achieve such a goal state. Therefore, a planning algorithm computes the state after
the execution of each action considering the semantic outputs and calculates which other actions
can be executed in this state (using SemIn). This is performed until all specified goal states are
attained or the planning is stopped, because a state has already been computed and does not need to
be evaluated again or a goal state will never be achieved.

The result is then used in the last step to create the process model. Therefore, the action-state-
graph computed in the step before is extended with different control structures and finally a specific
modeling notation, e.g. UML activity diagram (OMG, 2009b), is returned. An overview about these
planning steps can also be seen in Figure 1.

Figure 1: Three steps of SEMPA

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 8

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 9

We stated before that all process actions are assumed to be annotated with parameters. The first
step of the planning algorithm is based on these parameters which is why a lack of the annotation
could lead to the impossibility to achieve planning results.

3. TASKS FOR PROCESS MODEL ADAPTATION
The adaptation of process models as well as their execution is necessary for companies in order to
be flexible and therefore to have an advantage over competitors. The term flexibility has been
widely discussed in information systems (IS) and two areas of flexibility are commonly dis -
tinguished (cf. Hanseth et al, 1996 or Gebauer and Schober, 2006): flexibility in the pattern of use
and flexibility for further changes. Flexibility-to-use is thereby the range of process require ments
that is supported by the IS without requiring a major change of the IS. On the other side, flexibility-
to-change requires a major change of the IS considering the flexibility of the IT personnel, the
integration of data and functionality and the modularity of system components (Gebauer and
Schober, 2006).

For process models we can transfer these definitions: a process model has an internal flexibility-
to-use, if different kinds of processes that only vary slightly are covered. It has an inherent
flexibility-to-change, if most parts of the process model stay the same for major changes of the
business process and only some parts need to be adapted. A process model is not flexible at all, if
the complete model needs to be redesigned, when changes of the underlying process appear. In this
paper we focus on flexibility-to-change, i.e. only some parts of the process model need to be
adapted to fit to the business process again.

After transferring these definitions we would name a process model inflexible, if all process
actions of the model have been changed: ∀n ∈ N : n ∈ libC A where elements stored in the library
libC A (∀n ∈ libC A ⇒ n ∈ libCA) are those that have been changed. This would result in a replacement
of the complete process model.

In contrast, we would name a process model flexible-to change if single process actions or
fragments changed and possibly need adaptation:

• Deleting a single process action without further adaptation
• Replacing a process action with another action out of libA

• Marking a process action to be re-planned and adaptation that possibly leads to deletion or
replacement of the process action or process fragments according to the re-planning

Deleting and replacing single process actions does not necessarily induce a complex replanning if
input and output are identical or a produced output is not necessary any longer. Given a process action
ndel to be deleted, an incoming edge to this node (Ein(ndel)) and the successor process action (or another
arbitrary process model node) nsucc of ndel such that Eout(ndel) = Ein(nsucc). As defined in Section 2 all
process actions in our graph have at most one incoming and one outgoing edge. To perform the
deletion, the incoming edge to Ein(ndel) is connected to nsucc and ndel is removed from the model.
The replacement of single process actions is even more easy. The incoming edges to the node nold

to be replaced are connected to the new node nnew. The outgoing edges of nold are connected to
nin and finally nold is deleted. After integrating the new one no replanning is necessary. Please
note that this obvious deletion and replacement of process actions is possible only if the
following assumptions apply:

• Output produced by the deleted or replaced process action is not required at any other node in
the process model

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 9

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 201110

• Input and Output fit flawlessly from predecessor to successor nodes when deleting nodes
• Input and Output of a replacement node is semantically identical to the node to be replaced

As those assumptions require quite significant human effort to identify suitable alternative
process actions, we look into the last and most interesting possibility when it comes to process
model adaptation. This is when the adaptation of certain process actions is necessary but it is not
now how this adaptation could look like e.g. by replacing a process fragment with another new one.
This is the usual case as we suppose the set of process actions in enterprises to be extraordinary
large and complex. Furthermore there might be two or more process actions that need to be adapted
due to legal and/or business driven changes. As a result, the most appropriate way would be to mark
all process actions that need adaptation. More technically we collect all those process actions in a
library libCA ⊆ libA as introduced above.

In order to automatically adapt a process model to changing requirements we assume that the
process model has already been planned and therefore all process actions are described at least with
their semantic inputs and outputs using ontology concepts (SemAn). Furthermore, we assume that
we know the process actions that have been changed and how they have changed. Despite this
assumption we will describe how this identification could take place and how the used semantics
could help to improve this manual process. Since new regulations or customer requests can mostly
be reduced to changes on a few actions this assumption is not too restrictive anyway. After the
changed actions have been identified in the existing process models (which is a simple search
according to their name), the adaptation process can start.

Following up the described requirements, the tasks for process model adaptation are the
following:

1. Identification and collection of process actions that have been changed (Section 3.1)
2. Computation of the fragments that need to be adapted1 (Section 3.2)
3. Identification of the initial state of each process fragment (Section 3.3)
4. Calculation of the goal state of each process fragment (Section 3.4)
5. Re-planning the process fragments considering the changed process actions (Section 3.5)
6. Integration of the planning result into the process model (Section 3.6)
7. Validation of the adapted process model (Section 3.7)

We will now elaborate each task in further detail.

3.1 Identification of Changed Process Actions
As explained in the section before, our approach expects process actions that have changed to be in
a library called libCA. The first step in our approach is how the collection of process actions is
managed, and the library is filled at the end.

The most obvious way to fill libCA is simply to put the process actions out of libA manually, i.e.
the human modeler needs to look through all process actions that have been stored in the process
library libA, select those that have been changed and copy them to the library libCA. As this might
be a time consuming task depending on the power of libA we will show another more efficient way.

As our approach bases on semantic annotations, these can be used for the identification. We
assume that we do not know each task that has been changed, but at least what the changes are
about. Concretely this means that we are able to identify the concept c in our ontology that is used

1 Where a fragment can be more than the known process action that changed. Basically, it could be made up of several
process actions around the changed one.

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 10

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 11

for annotation and is subject of the change. Using this concept and the underlying ontology it
becomes possible to automatically identify process actions that take the concept as input or output
using the filter functions for semantic annotations: ∀n ∈ libA : SemIn(n) ∩ C ≠ ∅ ∨ SemOut(n) ∩ C
≠ ∅ ⇒ n ∈ libCA with C being the set of changed concepts. Using this method it is possible to
identify process actions that might have changed and need adaptation. Those are added to libCA

therefore to be considered in the following phases.

3.2 Computation of Fragments to be Adapted
All process actions that have been changed (stored in the process library libCA) need further process -
ing. In the next step we need to search for the entailing fragments of these process actions in order
to re-plan these fragments. The calculation of the surrounding fragment allows us later to start
planning with one initial state and a single goal state and makes the integration of the planning result
easier afterwards.

A process fragment (or Single-Entry-Single-Exit fragment, short: SESE fragment) can be either
a single process action or a part of the model that has only one incoming (the entry edge e) and one
outgoing (the exit edge e�). It can be defined as a nonempty subgraph of G with N� ⊆ N and E� = E
∩ (N� × N�) such that there exist edges e, e� ∈ E with E ∩ ((N\N�) × N�) = {e} and E ∩ (N� × (N\N�))
= {e�} (cp. Vanhatalo et al, 2007). In our further work we are only interested in canonical process
fragments, i.e. fragments that do not overlap and are either nested or disjoint.

We calculate the (canonical) process fragments as well as the strongly connected components
(SCC) of the marked process actions that have been changed. SCCs of a directed graph G are the
max imal strongly connected subgraphs, i.e. there is a path p from each node in the subgraph to every
other node in the same subgraph. The computation of fragments and SCCs is done using a token-flow
algorithm that has been introduced in (Götz et al, 2009). We shortly summarize our algorithm here.

This algorithm builds on a token propagation mechanism. Tokens and token algorithms have
already been described elsewhere, e.g. in (OMG, 2009a). The token-flow is calculated in two steps:
first, single tokens propagate through the graph and second, tokens from the same origin are
recombined.

In the first step, tokens are created at the out-flow of splitting gateways carrying information on
their origin. They propagate along the flow and can re-combine with other tokens. To each edge a
subset of tokens called token labeling is assigned.

For a single token, the propagation through the graph is calculated by tracking its route along
the edges. When tokens arrive at a gateway with several outgoing edges (either Ndecision or Nfork), all
of the gateway’s outgoing edges e ∈ Eout are labeled with the same token: At nodes without degree
> 1, new tokens are created. The outgoing edges are labeled with the union of the arriving token sets
and the newly generated tokens. At merging gateways (Nmerge or Njoin), Eout is labeled with the union
of all incoming tokens.

Calculating the flow for each token separately is inefficient, because edges have to be visited
several times, once for each token. It becomes more efficient when handling complete sets of
tokens, by successively calculating the out-flow at nodes where all entering flow has been labeled.

In the second step, the recombination of tokens is calculated. When all tokens belonging to the
same gateway have arrived at one edge, they are removed from the labeling (re-combination).
Components can be derived by matching pairs of edges with equal token sets.

Different to (OMG, 2009a), the process does not stop whenever a component is encountered but
continues until all the edges have been labeled. The procedure does not have to start again, and also
enables the recognition of more advanced, interleaved structures.

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 11

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 201112

We now define the set of tokens TT. A token carries information on the parallelization for which
the token was generated, i.e. the origin node n and a number i referring to the corresponding
outgoing edge:

TT(N,E) : = {(n, i) | n ∈ N ∧ i ∈ NN ∧ i < |Eout(n)|}.

Each edge in the graph is assigned a subset of TT by the token labeling function t : E→P(TT)∪{⊥}.
Token creation occurs at nodes with |Eout(n)| > 1. Tokens propagate and unite at nodes with |Ein(n)|
> 1. Figure 2 illustrates the flow of tokens created at nodes 1 and 2. After all edges have been
labeled, tokens originating from the same node converge and are removed from the labeling
(indicated in the figure by the curly brackets).

Finally, the labeling is used to determine the components of the graph. If for two edges e1, e2 ∈
E, e1 ≠ e2 : t(e1) = t(e2) holds, they mark the beginning and the end of a component C, i.e. {e1, e2}
= {source(C), sink(C)}.

The resulting components can be overlapping, ambiguous, and include trivial components. In
Figure 2 the converged labeling {(1, 1)} appears at four edges. Each pair of these edges marks a
valid component, but not all of them are desirable. This can be avoided by a strategy which shows
how to derive the correct partitioning, covering sequences, and further component types.

Algorithm 1 summarizes the Token Flow procedure. For an acyclic graph with start node Nstart,
call the tokenFlow function with an initial labeling t(Nstart) := Ø. The function pick(e ∈ E | prop : e
→ BB) nondeterministically selects an element e from E, that meets a required property, i.e. prop(e)
= true. The function timestamp assigns an incrementing index to the visited elements, thus imposing
an ordering on them. The main loop of the algorithm in line 14 picks an arbitrary node, for which
all incoming edges have been labeled with tokens, and calls the processNode function for it. This
function computes the leaving flow from the entering flow by first merging all token sets from the
entering edges (line 2), and then propagating the resulting set to the outgoing edges. For multiple
outgoing edges, a new token is assigned to each edge in line 8. After processing, to each edge a
timestamp (line 18) is assigned, which can later be used to identify sequence-boundaries. Once the
main loop in tokenFlow terminates, converged tokens are removed (line 22).

Please note that cycles in process models need a special treatment (which is why SCCs are also
computed) and are only considered in an extended version of this algorithm which is elaborated in
further detail in (Gӧtz et al, 2009).

Regarding the complexity of the Token Flow algorithm we assume a constant runtime of the
functions pick, t, timestamp and first. For the remaining parts of the algorithm the complexity is
O(|N| + |E|).

1

2(1,0)

(1,1)

(1,1)

(1,1)

(1,0)

(1,1)

(2,0)

(2,1)

(1,0)

(2,0)

(1,0)

(2,1)

(1,0)

(2,0) (1,0)

(2,0)

(1,0)

(2,1)

(1,0)

(2,1)

(2,0)

(2,1)

(1,0)

(2,0)

(2,1)

(1,0)

Figure 2: Example of Converging Token Flow

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 12

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 13

By using the described algorithm we found the components that contain changed process actions
and therefore need to be adapted. We set these as the process fragments and calculate the initial and
goal state of each fragment for replanning in the further steps.

This algorithm walks through the process model graph and processes each node once. Thus, the
complexity of this part is linear (O(n)).

3.3 Initial States of Process Fragments
In this step we need to identify the initial state of the process fragment that shall be actualized. A
state s is a subset of the set of parameters P, s ⊆ P. For this identification we have two possibilities:

The first one would be to compute the state that has been reached where the process fragment
starts. This state can then be used as initial state for the re-planning. Therefore, we build a planning
graph starting with the first action of the process model until the beginning of the fragment has been
reached. The disadvantage of this solution is, that, if we have a rather big process model, probably

Algorithm 1: Calculate Token-flow

Require: t : E → P(TT) ∪ {⊥} // initial making
O ⊆ N // to-do set of nodes

Ensure: t : E → P(TT)
1: processNode(n ∈ N) {
2: P(TT) M := ∪u∈t(Ein(n))u;
3: if |Eout(n)| = 1 then
4: t(elt(Eout(n))) := M;
5: else
6: int i := 0;
7: for all e ∈ Eout(n) do
8: t(e) := M ∪ {(n, i + +)};
9: end for
10: end if
11: }
12:
13: tokenFlow(t, O) {
14: while O ≠ Ø do
15: pick(n ∈ O | t(Ein(n)) ⊥);
16: processNode(n);
17: O = O\n;
18: timestamp(n);
19: end while
20: for all e ∈ E do
21: for all n ∈ first(t(e)) do
22: if t(e) ⊇ {(n, i) | i < |Eout(n)|} then
23: t(e) = t(e)\{(n, i) | i < |Eout(n)|}
24: end if
25: end for
26: end for
27: }

∉

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 13

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 201114

hundreds of process actions and states need to be computed again. Additionally, we face the
problem how to compute the initial state if the process action that has been changed is the first one
of the whole process that has been executed. Then, there is no chance to determine this state.

The second possibility only looks at the process fragment that needs to be re-planned. This
process fragment is probably much smaller which results in a faster computation than for the whole
process model. Here, we compute all input parameters of the actions of this fragment. We remove
the generated output parameters again, because those had been created as part of the fragment
before and therefore are not available for the initial state anymore during re-planning.

This leads to a set of parameters that was necessary before for the execution of the process
actions and should be sufficient for the re-planning, too. Formally, we take as initial state init :=
SemIn(n1) ∪ ∪∀i=2..|N|(SemIn(ni)\SemOut(ni–1)) (compare Algorithm 2). The complexity of this
algorithm is O(|N| + |P|).

3.4 Goal States of Process Fragments
Goal states = G1, G2,…, Gk specify the set of k ∈ NN different (sets of) parameters Gx ⊆ P (with x =
1, …, k) which shall be reachable in a feasible solution. The calculation of the goal state work
analogous to the computation of the initial state. Again, we have two possibilities: The first
possibility computes the initial state of the rest of all process actions in the process model that
follow the fragment. The other possibility considers only the process fragment that should be
adapted and calculate the sum of all outputs of all actions in this fragment (∪i=1..|N| SemOut(ni)).

For performance issues we again take the second possibility, thus the complexity is equal to the
step before: O(|N| + |P|).

3.5 Re-planning Process Fragments
Now that we have the initial state and the goal state of the process fragment we can re-plan the
process fragment. We described the automatic planning of business processes already in Heinrich
et al (2008). Therein, we described the planning but did not specify how the adaptation of process
models can be realized.

Algorithm 2: Compute Initial State

Require: Strongly connected component C
1: computeInitialState(C) {
2: n := getFirstNode(C)
3: init := SemIn(n) // initial state
4: removeList := SemOut(n)
5: for all n := getFollowingNodeInComponent(n, C) do
6: for all Parameter P ∈ SemIn(n) do
7: if ¬ (P ∈ init) ∧ ¬(P ∈ removeList) then
8: init = init ∪ P
9: end if
10: end for
11: removeList := removeList ∪ SemIn(n)
12: end for
13: return init
14: }

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 14

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 15

In order to better understand this important phase we will summarize the steps of our semantic
planning approach in the following.

Note that all existing process actions n ∈ Naction that have been stored in the process library libA

are considered. Please note, that the library libCA was only used for identification of the process
fragments, but for re-planning all process actions available in the library are required.

In order to identify dependencies between process actions regarding their input and output
parameters, SEMPA computes an Action Dependency Graph (ADG) through backwards traversing
beginning from the goal state. This ADG includes process actions and corresponding parameters as
nodes. We use semantic reasoning for this part of the algorithm. This means input and output
parameters of the process actions stored in the process library and their relationships in the ontology
are analyzed (SemIn(n) and SemOut(n) resp.).

As the ADG does not describe direct sequences of process actions, a forward search algorithm
is used to determine all sequences of process actions leading from the initial to the goal state. As a
result, we obtain an Action State Graph (ASG) which has two partitions: the process actions Naction

and states which capture the state of the world after the execution of the action considering SemIn
and SemOut. Thereby, the algorithm performs a nondeterministic planning (Ghallab et al, 2004)
with initial state uncertainty (Bonet and Geffner, 2001). This graph comprises all feasible solutions
to the corresponding planning problem.

The action-state-graph is the basis to build the (syntactically correct) process model in the last
step and to identify control structures such as e.g. Ndecision or Njoin.

There is no estimation regarding complexity of the aforementioned algorithm as it is not
examined in further detail here. We refer to Henneberger et al (2008) for further details.

3.6 Integrating the Planning Results
The result of the planning is first put into an own embedded subprocess to enable an isolated
consideration and possible further (manual) changes of the new planned part. This is performed
utilizing a StructuredActivityNode in UML in order to create a logical, closed group of the new
process actions. The two nodes Nstart and Nstop of the subprocess are not used in further steps and
can therefore be removed. The remaining subprocess is integrated into the original model as
follows: As defined in Section 3.2 the parts of the original process we identified for re-planning
have only one entry edge e and one exit edge e� (due to the fact that they are SESE fragments).
Those are connected to the entry edge eentry of the new planned fragment. The exit edge eexit is
connected respectively.

It is possible that the planning algorithm returns more than one result. There are several
possibilities to deal with this. Based on specified properties one of the fragments could be chosen
automatically as the one to be inserted in the original model. Those properties and thereon based
decision strategies can range from straightforward to more complex approaches.

A straightforward way would be to define the number of process actions in the new planned
fragments as parameter for the decision. The strategy and this parameter could be to chose and
integrate the fragment that has the fewest process actions as this might indicate the fastest execution
time or least complexity. More complex strategies could include economic parameters in the
decision. Processing time or the cost of the planned fragments could affect the strategy which
fragment to implement. Calculating (including the definition of) the cost of process model or
process model fragments is out of the scope of this paper. Therefore, we present a more pragmatic
approach that does not exclude any possible results: If SEMPA computes more than one result that
could be integrated, then all planning results are integrated in copies of the original process model

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 15

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 201116

and the different alternatives are shown to the user who must then decide which one conforms best
to the business requirements.

If SEMPA does not return a result, e.g. because not all actions for achieving the goal states exist
in the process library, then the planning is stopped and the user is notified which parameter could
not be fulfilled. This part of the algorithm that locates the position where to integrate the new
fragment can be achieved by a depth-first search basically. This results in complexity of O(|N| + |E|).
Another possibility would be to store the identified SESE nodes in an efficient data structure like a
hash map.

3.7 Validating the Adapted Process Model
The resulting process model needs to be validated in the end in order to ensure that still all
dependencies have been fulfilled. First, it is validated automatically: therefore, it is evaluated
whether each process action has all necessary input parameters and whether there is any deadlock
or lack of synchronization. Therefore, we applied the algorithm presented in Götz et al (2009) again
that is using the already existing components as well as the re-planned fragments. For computing
deadlocks and lack of synchronization we applied a method similar to Vanhatalo et al (2007) that
has been adapted to conform to the token analysis algorithm introduced before.

If no errors have been detected, then the resulting process is shown to the business analyst who
can then decide whether it should be further refined or it can be enacted directly as it has been
planned. The business analyst might for example identify parts of the process model that can be
further simplified: since the adaptation only computes process fragments again but not the whole
process, there could now be optimization potential in the process model.

The overall complexity of our method is composed of the discrete parts we described in this
section. Although we analyzed most of the steps regarding complexity not all parts have been
detailed as some of them are outside the scope of this paper. That is why we cannot give the exact
costs for the entire process.

4. CASE STUDY
For a case study we chose an example from the financial services industry. This industry seems to
be dedicated for the adoption of technologies facilitating the automatic planning of business
processes. Electronic commerce has radically changed the competitive landscape in the financial
services industry and provides new business opportunities (Malhotra and Malhotra, 2006). The
internet constitutes e.g. a flexible delivery channel for selling financial products. Product life cycles
have been accelerated dramatically and at the same time financial products have become more
varied and complex. This determines more difficult and permanently changing processes that need
to be managed including external suppliers and partners. The ability to rapidly adapt processes to
new business requirements constitutes a significant competitive advantage.

We envision financial services companies that are able to design new products and at the same
time can automatically configure their processes reducing time-to-market. The basic idea for this
example has been extracted from a real life case which has been conducted in the SEMPRO-project
at a large financial service institution. However, it has been highly simplified for this paper.

The process depicted in Figure 3 describes the processing of an order (e.g. stock order). After
an order has been submitted to a financial institute, the responsible employee checks the
competencies and validity of the customer and routes the order, if it is valid, to the stock market. If
it is not valid, then the customer is contacted first and afterwards the validity is checked by a second
person again (4-eyes authorization). If the competencies and validity are fulfilled now, then some

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 16

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 17

extended competencies are checked, otherwise the basic checks are started again. In parallel to this
process, the order request is stored in a database and the customer gets a confirmation email stating
that the order request has been received. After that, some statistics are updated which allow the
derivation of possible improvements later on. The following changes have now been made to the
process actions (marked in a rectangle in Figure 3):

• Store request in database had before as input an order request and now requires additionally the
person that works on the order request. This is not covered by the process model yet and
therefore other process actions of the process library libA need to be integrated.

• Update statistics first required only an order request and gave a statistics as output, now it
requires a valid order and gives an order statistics as output. The management has decided that
they only want to see statistics about valid orders.

• Check competencies is not allowed anymore and has been deleted from libA. Now always the
extended competencies must be checked (not only whether the employee has the rights to work
on the order, but also whether the customer has the authority to buy or sell the order correspond -
ing to the assigned risk class).

The ontology that is used here (an excerpt is shown in Figure 5) defines an order as a composite
parameter which includes an order state (e.g. valid or invalid), an order amount (typically a positive
numeric value) and the order type (should the order be bought or sold). Orders are integrated in
order statistics and have one requesting customer. A customer is a person which might also be an
employee. Each order has an associated risk class.

After identifying the changed process actions, we need to compute the fragments that need to be
adapted. Therefore, our token-flow algorithm analyzes the process model and discovers several
components (including loops in the process model, cf. Figure 4). For the calculation of fragments it
is required to split some control nodes (like the first fork node) into two different ones in order to
compute the process fragments. These can be seen in Figure 6. In this figure C2 and C6 need to be
adapted as some of their entailing actions have been changed.

Figure 3: Proof of Concept from the Financial Area with Marked Process Actions

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 17

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 201118

As third task we compute the initial states of component C2 and C6 (both are shown in Figure 7
again). The initial state of C2 is defined as SemIn(Check competencies) ∪ SemIn(Check validity) \
SemOut(Check competencies). The input of Check competencies has been an incoming order with
a positive order amount, more formally defined as (Order, {(OrderState, OrderStates, {incoming}),
({OrderAmount, int, > 0}), (OrderType, OrderTypes, {Buy, Sell})}) whereas the output had an
OrderState that was not {incoming} anymore, but {checked}. Check validity requires a checked

S
12

1

2

13

14 15 16

3 4 5

678

9

1110

17 E
1

part

(1,0)
(SCC 0, 1)

(1,0)

(1,1)
(1,2)

(1,2)

(1,1)

(1,2)

(1,1)

(int,1) (int,1) (int,1)

(int,0)

(int,0)(int,0)

(1,0)
(SCC 0, 1)

(int,2)

(1,1)
(1,2)

(1,1)
(1,2)

(1,1)
(1,2)

(1,0)
(SCC 0, 0) (1,0)

(1,0)

Figure 4: Tokens in the Graph

Figure 5: Ontology in the Proof of Concept

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 18

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 19

order and a customer (Customer, Person, Person) and returns an order that is {valid}. Hence, the
initial state of C2 is {(Order, {(OrderState, OrderStates, {incoming}), ({OrderAmount, int, > 0}),
(OrderType, OrderTypes, {Buy, Sell})}), (Customer, Person, Person)}.

As fourth task we compute the goal states of component C2 and C6. The goal state of component
C2 can be computed as an order that needs to be valid (Order, {(OrderState, State, {valid}),
({OrderAmount, int, > 0}), (OrderType, Type, {Buy, Sell})})

Now the planning for both fragments can start. This results in two (small) independent process
models which are integrated as embedded subprocesses into the already existing process model. For
component C2 the new action Check extended competencies has been found which is now the only
process action that returns a checked order which is the input of Check validity that again returns a
valid order.

S
12

1

2

13

14 15 16

3 4 5

678

9

1110

17 E
1

part

(1,0)

(SCC 0, 1)

(1,0)

(1,1)

(1,2)

(1,2)

(1,1)

(1,2)

(1,1)

(int,1) (int,1) (int,1)

(int,0)

(int,0)(int,0)

(1,0)

(SCC 0, 1)

(int,2)

(1,1)

(1,2)

(1,1)

(1,2)

(1,1)

(1,2)

(1,0)

(SCC 0, 0) (1,0)

(1,0)

C
5

C
1

C
2

C
6

C
3C

4

C
7

Figure 6: Discovered Components

Figure 7: Determined Process Fragments for Planning

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 19

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 201120

Afterwards, the embedded subprocesses can be resolved and directly integrated into the process
model (cp. Figure 8). In the end the validation algorithm affirms that all dependencies have been
fulfilled and that there are no deadlocks.

Please note that our planning algorithm is currently not capable of calculating cycles. The
existing loop in the upper part of the original process model has been created by a human modeler.
The business analyst might notice that the process actions in the new planned area are similar to
existing process actions. Therefore, a re-combination of the process model might make sense, but
this up to the business analyst.

The process model adaptation mechanism uses the implementation of the planner SEMPA on
top of Eclipse JWT (Lautenbacher, 2009) utilizing OWL API together with the Pellet reasoner and
an ontology based on OWL from which the semantic information is derived from. For the
calculation of the components using the introduced token-flow algorithm we integrated the
Workflow-Codegeneration framework that has been described in Roser et al (2007).

5. RELATED WORK
Already some work exists on using semantic annotations of process models: often semantic
annotation is used to identify suitable semantic web services for execution (Hepp and Roman, 2007).
In Koliadis and Ghose (2007) the authors apply annotations to verify interoperating pro cesses that are
captured in process models and try to find inconsistencies between actions that have been seman -
tically annotated with effects. Thereby, they also consider control structures such as Ndecision and Nfork.

Koschmider (2007) shows in her dissertation how a user can be assisted during the modeling of
processes by calculating the similarity between the existing process model and fragments from
other models. Thereby, not only semantic dependencies, but also syntactic, structural and linguistic
similarities are considered. However, already completed process models cannot be adapted.

In Graml et al (2008) the authors use business rules to provide a mechanism to adapt the control-

Figure 8: Final Planning Result

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 20

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 21

flow of a business process. The underlying idea here is that business rules often are already
implicitly contained in a process model and therefore should be extracted to make it more agile. In
difference to our approach no reasoning technologies are used which makes it difficult to resolve
ambiguities. Similarly, Milanovic et al (2008) shows how business rules and processes can be
combined during modeling.

Tripathi et al (2008) describes an adaptation of process models when the underlying web
services have changed. Thereby, business processes need to be captured in OWLS (Martin et al,
2007) and when a service has been changed, the sequence of services can be calculated again.
However, this approach does not consider more complex control structures or compute advanced
process models to our knowledge.

There is also ongoing work concerning (semantic) correctness of BPM systems: Especially
changes and their effects during execution are analyzed (Ly et al, 2006; 2008). However, this is not
the focus of our research as we investigate the design time of process models and therefore handle
a different phase of the business process lifecycle.

Furthermore, the planning of process models has similarities with (semantic) web service
composition approaches (Sirin et al, 2004; Lang and Su, 2005; Pistore et al, 2005; Meyer and
Weske, 2006). These approaches aim at composing (executable) workflows, consisting of individual
semantic web services which are arranged together to achieve one distinct goal. Most approaches
either do not plan complex compositions comprising e.g. alternative or parallel control flows or
cannot handle numerical variables and enumerate states explicitly which is necessary in our context.

Additionally, there are important conceptual differences between the planning of process models
and web service composition. We want to support process modelers in the task of designing
(technology-independent) process models. Thus, the result of planning should be a visual and (for
a human being) comprehensible representation of the process, whereas in the context of web service
composition the specification of the workflow above all should be machine interpretable. Also, the
planning of process models is conducted on a higher level of abstraction. Since actions do not need
to be executable in the first place, their semantic annotation can be more “lightweight”. Thereby, a
major disadvantage of semantic web service technologies (see the discussion in Haniewicz et al,
2008) may be alleviated.

6. CONCLUSION AND FUTURE RESEARCH
In this paper we have introduced an adaptation mechanism for existing process models. If the
demands of customers change, new jurisdiction and regulations appear or a supplier adapted its
process, then only the process actions that already exist in a process library need to be changed and
all process models can be adapted automatically. We identified and described the phases of this
adaptation mechanism in detail and demonstrated the approach in a case study. Therefore, we use
semantic technologies for the re-planning of identified process fragments.

In the future we will work on the identification of duplicates in the re-planned process model as
well as decision support and metrics in case there is more than one feasible solution to be integrated
in a process model. This will be done as part of the validation step and we aim to automatically
simplify the process model. Additionally, we work on improving the planning algorithm (e.g.
including arbitrary cycles during planning).

Taking business rules into account is also an important prerequisite to consider economical require -
ments on a process model: e.g. a process is not allowed to cost more than 1000 Euro or roles are not
able to work on several actions in parallel. These requirements will require a refinement of the exist -
ing algorithms which we will analyze (together with its impacts) in the automotive domain shortly.

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 21

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 201122

REFERENCES
BONET, B. and GEFFNER, H. (2001): GPT: A tool for planning with uncertainty and partial information. In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI), 82–87.
DEGWEKAR, S., LAM, H. and SU, S.Y. (2007): Constraintbased brokering (CBB) for publishing and discovery of web

services. International Journal on Electronic Commerce Research, 7(1): 45 – 67.
GEBAUER, J. and SCHOBER, F. (2006): Information system flexibility and the cost effciency of business processes. Journal

of the Association for Information Systems, 3: 122–147.
GHALLAB, M., NAU, D. and TRAVERSO, P. (2004): Automated Planning. Elsevier, San Francisco.
GÖTZ, M., ROSER, S., LAUTENBACHER, F. and BAUER, B. (2009): Token analysis of graph-oriented process models.

In Proceedings of DDBP 2009, Auckland, New Zealand.
GRAML, T., BRACHT, R. and SPIES, M. (2008): Patterns of business rules to enable agile business processes. Enterprise

Information Systems, 2(4): 385–402.
GRAU, B.C., HORROCKS, I., MOTIK, B., PARSIA, B., PATELSCHNEIDER, P. and SATTLER, U. (2008): OWL2: The

next step for OWL. Journal on Web Semantics, 6(4): 309 – 322.
GRUBER, T.R. (1993): A translation approach to portable ontology specifications. Knowledge Acquisition, 5 (2): 199–220.
HANIEWICZ, K., KACZMAREK, M. and ZYSKOWSKI, D. (2008): Semantic web services applications – a reality check.

Journal Wirtschaftsinformatik, 50(1): 39–45.
HANSETH, O., MONTEIRO, E. and HATLING, M. (1996): Developing information infrastructure: The tension between

standardization and flexibility. Science, Technology and Human Values, 11(4): 407–426.
HEINRICH, B., HENNEBERGER, M., KRAMMER, A., BEWERNIK, M. and LAUTENBACHER, F. (2008): SEMPA –

Ein Ansatz des Semantischen Prozessmanagements zur Planung von Prozessmodellen. Journal Wirtschaftsinformatik,
November/December.

HENNEBERGER, M., HEINRICH, B., LAUTENBACHER, F. and BAUER, B. (2008): Semantic-based planning of process
models. In Proceedings of Multikonferenz Wirtschaftsinformatik (MKWI).

HEPP, M., LEYMANN, F., DOMINGUE, J., WAHLER, A. and FENSEL, D. (2005): Semantic business process management:
A vision towards using semantic web services for business process management. In Proceedings of IEEE ICEBE, Beijing,
China, 535–540.

HEPP, M. and ROMAN, D. (2007): An ontology framework for semantic business process management. In Proceedings of
Wirtschaftsinformatik, Karlsruhe, Germany.

KOLIADIS, G. and GHOSE, A. (2007): Verifying semantic business process models in inter-operation. In Proceedings of
IEEE SCC 2007, Salt Lake City, Utah, USA; July, 913.

KOSCHMIDER, A. (2007): Ahnlichkeitsbasierte Modellierungsunterstützung für Geschäftsprozesse. Ph.D. thesis, Universität
Fridericiana zu Karlsruhe, Germany.

LANG, Q. and SU, S. (2005): AND/OR graph and search algorithm for discovering composite web services. International
Journal of Web Services Research 2(4): 46–64.

LAUTENBACHER, F. (2009): Execute your processes with Eclipse JWT. In Proceedings of JAX / SOACon / Eclipse Forum
Europe, Mainz, Germany.

LY, L., RINDERLE, S. and DADAM, P. (2008): Integration and verification of semantic constraints in adaptive process
management systems. Data Knowl. Eng., 64(1): 3–23. ISSN 0169-023X.

LY, L.T., RINDERLE, S. and DADAM, P. (2006): Semantic correctness in adaptive process management systems. In BPM
2006, Vienna, Austria, 193–208. SpringerVerlag.

MALHOTRA, R. and MALHOTRA, D. (2006): The impact of internet and e-commerce on the evolving business models in
the financial services industry. International Journal of Electronic Business, 4(1): 56–82.

MARTIN, D., PAOLUCCI, M. and WAGNER, M. (2007): Bringing semantic annotations to web services: OWLS from the
SAWSDL perspective. In Proceedings of ISWC/ASWC, Busan, Korea.

MEYER, H. and WESKE, M. (2006): Automated service composition using heuristic search. In Proceedings of the 4th
International Conference on Business Process Management (BPM 2006), 81–96. Vienna, Austria.

MILANOVIC, M., GASEVIC, D. and WAGNER, G. (2008): Combining rules and activities for modeling service-based
business processes. In Proceedings of the 2008 12th Enterprise Distributed Object Computing Conference Workshops,
11–22. IEEE Computer Society, Washington, DC, USA. ISBN 978-0-7695-3720-7.

OMG (2007): Unified modeling language (UML) superstructure, version 2.1.2. OMG Specification.
OMG (2009a): Business Process Modeling Notation Specification, Version 1.2. formal/09-01-03.
OMG (2009b): Unified modeling language (UML) superstructure, version 2.2. OMG Specification.
PISTORE, M., TRAVERSO, P., BERTOLI, P. and MARCONI, A. (2005): Automated synthesis of composite BPEL4WS web

services. In 3rd International Conference on Web Services, 293–301.
ROSER, S., LAUTENBACHER, F. and BAUER, B. (2007): Generation of workflow code from DSMs. In Proceedings of

the 7th OOPSLA Workshop on Domain-Specific Modeling, Montreal, Canada.
SIRIN, E., PARSIA, B., WU, D., HENDLER, J. and NAU, D. (2004): HTN planning for web service composition using

SHOP2. Journal of Web Semantics 1(4): 377–396.
THOMAS, O. and FELLMANN, M. (2007): Semantic business process management: Ontology-based process modeling

using event-driven process chains. International Journal of Interoperability in Business Information Systems, 2 (1).

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 22

Adaptation of Process Models – A Semantic-based Approach

Journal of Research and Practice in Information Technology, Vol. 43, No. 1, February 2011 23

TRIPATHI, U.K., HINKELMANN, K. and FELDKAMP, D. (2008): Life cycle for change management in business processes
using semantic technologies. Journal of Computers, 3(1): 24–31.

VAN DER AALST, W., TER HOFSTEDE, A., KIEPUSZEWSKI, B. and BARROS, A. (2003): Workflow patterns. Distributed
and Parallel Databases 14(3): 5–51.

VANHATALO, J., VÖLZER, H. and LEYMANN, F. (2007): Faster and more focused control-flow analysis for business
process models through SESE decomposition. In ICSOC.

BIOGRAPHICAL NOTES
Thomas Eisenbarth holds a diploma in computer science from the University
of Augsburg and has been employed as a researcher at the Distributed Systems
Lab at the University of Augsburg in Germany since 2009. His research
interests include the combination and application of semantic technologies on
business process models.

Florian Lautenbacher received his PhD at the University of Augsburg,
Germany, and holds a diploma in Computer Science from the same university.
His research interests are in applying semantic technologies to model-driven
software engineering, in particular in workflow and business process technol -
ogies as well as service-oriented architectures. Moreover he is involved in
several other national and international projects mostly related to business
pro cess management and SOA. He has published more than 20 scientific
papers.

Bernhard Bauer has been professor and head of the Programming of
Distributed Systems Group at the University of Augsburg since 2003. He holds
a diploma in Computer Science from the University of Passau, Germany, and a
PhD in computer science from the Technische Universitaet Muenchen,
Germany. For more than six years he has worked in industry. The focus of his
research group at the university is on industrialization of software engineering
and software operation. The main research areas are model-driven software
development, semantic technologies as well as self-organizing systems to
improve the automation of the software product lifecycle as well as the auton -
omy of software systems. He has published more than 100 scientific papers in
the area of agent-based systems and agent-oriented software engineer ing,
compiler construction, (semantic-enabled) model-driven soft ware engineering
and autonomous systems.

Thomas Eisenbarth

Florian Lautenbacher

Bernhard Bauer

JRPIT 43.1.QXP_Layout 1 13/04/11 2:52 PM Page 23

