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Achieving higher quality software is one of the aims sought by development organizations
worldwide. Establishing defect free statements of requirements is a key strategy for achieving
improvements in quality. In this paper we present the results of a laboratory experiment that explored
the application of a checklist in the process of inspecting use case descriptions. We compare the
checklist with others in the literature then report experimental findings. A simple experimental
design was adopted in which the control group used an ad hoc approach and the treatment group
was provided with a six-point checklist. The defects identified in the experiment were classified at
three levels of significance: i. Internal to the use case ii. Specification impact, and iii. Requirements
impact. It was found that the identification of requirements defects was not significantly different
between the control and treatment groups, but that more specification and internal defects were
found by the groups using the checklist. In the paper we explore the implications of these findings.
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1. INTRODUCTION
Requirements are critical to system validation as they guide all subsequent stages of systems
development. Inadequately specified requirements generate systems that require major revisions or
cause system failure entirely. The requirements validation activity endorses the specification document
as an adequate external description of the system to be implemented. Providing complete, unam-
biguous, correct and consistent requirements and ensuring all requirements satisfy industry standards
improves the chances for a higher quality software product. However, since the general industrial
acceptance of use cases (Jacobson et al, 1992; OMG, 2003) as one of the most common means of
describing and analysing requirements (Neill and Laplante, 2003), achieving unambiguous, correct,
consistent and complete requirements description has been made both easier and more difficult. The
engineer can now apparently write use cases at ease and the customer can now apparently easily
validate their requirements through the use cases. There are problems too. Because of the informal
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nature of use case descriptions, it is inherently easy to introduce ambiguity into the documentation
(Gause and Weinberg, 1989). Also, because one use case can satisfy several requirements and one
requirement can be described by several use cases, it is often difficult to achieve completeness and
consistency. These problems, if not resolved, can cause later design and implementation difficulties. 

Defect detection in requirements documents is seen as one of the most effective and efficient
quality assurance techniques in software engineering (Porter et al, 1995; Parnas and Lawford, 2003).
Such defect detection should also be applied to use cases. Therefore, it seems reasonable to establish
an inspection process for use case descriptions since these are a major requirements document.
However, there has been relatively little literature specifically on use case inspections. Bittner and
Spence (2002), for example, provide a chapter on conducting typical reviews but they do not suggest
more than general advice on how to do inspections, not particularly what to look for. Adolph et al
(2003) present a two-tiered review pattern. Its first review attempts to eliminate “‘noise’ caused by
spelling, grammatical, formatting and technical errors” (p.65) in the use cases. The second round of
reviews explores whether the use case meets business needs, the specification and if it can be built.
But no specific checklists, for example, are provided. Cockburn (2001) provides a pass/fail test for
use case descriptions which can be taken as a quasi-inspection checklist that addresses whether the
description meets its goals, is really required and is feasible (Section 2.1 provides more details).

Despite this apparent disinterest in inspections in the use case literature, it is clear that inspections
are a very valuable exercise. Numerous approaches to inspections have been suggested since Fagan’s
original work (Fagan, 1976). Porter et al (1995) conducted an experiment concluding that in terms
of defect detection rate the Scenario approach was superior to both the Ad Hoc and Checklist-based
approach. In replication, Miller et al (1998) found that the defect detection rate of the Scenario
approach was once again superior to that of Checklist-based reading. However, Fusaro et al (1997)
obtained different results. They could not find any empirical evidence of better defect detection
performance when using Scenarios. Sandahl et al (1998) also could not support the superiority of the
Scenario method in their study. In a later replication of the same experiment, Halling et al (2001)
found results that were quite different from the other studies. Their large-scale experiment (150+
undergraduate students) led to the conclusion that the Checklist-based reading was overall more
effective on the individual level, whereas the Scenario approach gained effectiveness when applied
to a certain target focus. Rombach et al (2003) investigated the usage of roles in ER-Modelling
inspection meeting, comparing Ad Hoc based reading with checklist-based reading. Their findings
showed that the participants using a checklist had a significantly higher detection rate than the Ad
Hoc groups. Wohlin and Aurum (2003), who studied the impact of an individual reviewer on the
effectiveness of an inspection team, concluded that a tailored Checklist may indeed be cost effective. 

Brykczynski (1999), in an extensive overview of checklists for inspections, points out that that
many checklists are too generalized and need to be tailored. Travassos et al (1999) pointed out that
the focus in inspection when reviewing requirements should be more on verifying the content (its
semantics) and less on verifying the syntax. Lauesen and Vinter (2001), Wohlin and Aurum (2003)
and Rombach et al (2003) all classified defects according to the context they were in. The literature
indicates it is considered important to (i) tailor the checklist to the product under inspection, i.e. the
use case description, and (ii) focus more on the semantics (requirements) more than the syntax.

There is an interest in using use cases and scenarios in conducting inspections of documents
(Dunsmore et al, 2003; Thelin et al, 2003) but the assumption is that the use cases have already been
validated. Thus there appears to be a lack of formal inspection of use case descriptions themselves
prior to using them as tools in the inspection process. Though some checklists have been suggested
as a means of inspecting use case descriptions (see Section 2.1), there is a greater body of work
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making use of descriptions in inspections rather than addressing the quality of the descriptions
themselves. This paper presents and then compares a use case checklist against those available in
the literature. Our proposed checklist is then used in a formal two-stage inspection experiment
against an ad hoc approach. 

The next section discusses the use case checklist that was the instrument for the experiment and
compares it to other use case checklists in the literature. Section three presents the experimental
design. Section four presents the results from the experiment. Section five discusses conclusions,
implications for use case inspections and future work.

2. USE CASE DESCRIPTION CHECKLISTS
Our use case checklist is presented in Table 2. We then compare it to others published in the
literature (Section 2.1). The checklist acts as the instrument in the experiment. Our checklist is only
about the use case description. Importantly, it thus differs from other use case checklists in that it
does not address elements of the use case template, such as triggers and pre- and post-conditions in
detail or the diagram at all. (We do not address the diagram and other aspects of the template in this
checklist since we take an incremental approach to devising and testing checklists. We will consider
a checklist for these in future work. It is also the case that the diagram and template elements have
received a large amount of attention in the literature in comparison with use case descriptions.) The
derivation of the checklist is presented in Table 1 and is adapted from a means of assessing the

Checklist Elements Derivation

Coverage Scope Jackson (1995) – refined notions of completeness for requirements.
Span    

Text Order Gernsbacher (1996; 1997) – structure building framework
Graesser et al (1996) – inference building (Question -> Reply to Question)
Jacobson et al (1992), OMG (2003) – representing a complete transaction.
e.g. Trabasso et al (1989), Goldman et al. (1996) – local and global 

Cogent Dependencies coherence.
Garnham and Oakhill (1996) – referential continuity.
Graesser et al (1996) – inference building (Question -> Reply to Question)

Rational Gernsbacher (1996; 1997) – structure building framework

Answer Grasser et al (1996) – inference building (Question -> Reply to Question)
Anda et al (2001) – the realism of the use case  

Consistent Abstraction e.g. Anda et al (2001)   

Variations Kulak and Guiney (2000), Achour et al (1999) – keep variations to a 
Consistent separate section   
Structure Sequence e.g. Schneider and Winters (1998), Achour et al (1999)  – consistent 

sequential numbering  
e.g. Pooley and Stevens (1999) – avoid passive voice; the consensus is 

Consistent Language there are many grammatical elements to avoid. Some structures might 
improve comprehension e.g. Graham (1998)  

Separation Kulak and Guiney (2000) – keep variations to a separate section.
Consideration Alexander (2003) – failure to deal with exceptions leads to system failures. 
of Viable Alexander (2003) – failure to deal with exceptions leads to system failures.
Alternatives Numbering Cockburn (2001), Achour et al (1999) – there should be consistency in 

numbering.

Table 1: Derivation of the Checklist (adapted from Cox, 2002)
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understandability of use case descriptions and of use case writing guidelines; we refer the interested
reader to these references (Cox and Phalp, 2000; Cox et al, 2001; Phalp and Cox, 2002; Cox, 2002). 

2.1 Comparing Use Case Description Checklists
Anda and Sjoberg (2002) present an inspection checklist for the use case model. In assessing the
checklist, experimental results, however, showed that experienced inspectors found more defects
without the checklist; but that in another experiment, students found more defects with the checklist
than without. Their findings also showed that different stakeholders found different types of defects.
Since Anda and Sjoberg address the entire use case model, their study differs to ours in that we
address only the use case description, not the diagram. Their checklist addresses, primarily, actors,
completeness, correctness, inputs and outputs. Their results show that practitioners were interested
in finding defects related to actors, triggers and pre- and post-conditions. They did not find many
defects in the descriptions. The checklist for the description part of the use case model considers
completeness, rationality, abstraction and understandability.

McBreen (2001) proposes a use case checklist that covers a range of aspects from project team
to goal achievement/failure. Wiegers (2003) presents a use case inspection checklist that considers

1. Coverage. 

1.1. Span: The use case should contain all that is required to answer the problem. That is, is there
enough information in the description or is some detail missing?

1.2. Scope: The use case should contain detail only relevant to the problem statement. Extra un-
necessary information provided is out of problem scope and is not required.

2. Cogent.

2.1 Text Order: The use case should follow a logical path. Is this path logical or are events in the
description in the wrong order?

2.2 Dependencies: The use case should complete as an end-to-end transaction (which can include
alternative/exceptional flows). Does the actor reach a state that stops the transaction from
terminating as we expect?

2.3 Rational Answer: The logic of the use case description should provide a plausible answer to
the problem. Are there any events that appear out of place or you recognise as incorrect?

3. Consistent Abstraction. The use case should be at a consistent level of abstraction throughout. 
Mixing abstraction levels (problem domain, interface specification, internal design mixes) will cause
difficulty in understanding. Is abstraction consistent?

4. Consistent Structure.

4.1 Variations: Alternative and exceptional events should be excluded from the main flow and
should be in a separate section.

4.2 Sequence: Numbering of events in the main flow should be consistent. Are there any
inconsistencies?

5. Consistent Language. Simple present tense should be used throughout. Adverbs, adjectives, pronouns,
synonyms and negatives should be avoided. Have they been used?

6. Consideration of Alternative Flows and Exceptional Flows of Events. 

6.1 Viable: Alternatives and exceptions should make sense and should be complete. Are they?

6.2 Numbering: Alternative and exception numberings should match the numbers in the main
flow.  Do they or is there inconsistency? 

Table 2: Use Case Description Checklist
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ambiguity (in an ambiguous way – is the description “clearly written, unambiguous”?). His checklist
also explores completeness and abstraction. Klariti (2003) presents a checklist that is similar to that
of Wiegers. Kamthan (2003) builds upon Wieger’s checklist and the guidelines set out by Cockburn
(2001). Kamthan considers the importance of scope and focuses specifically on completeness.
Tervonen (2003) presents a seven-point checklist for use cases. This addresses the traceability and
conformity of the use cases to other requirements documents as well as whether the right functional
requirements have been described. Cockburn presents a pass/fail test for use case descriptions. He
addresses the abstraction level of the description, whether the description completes successfully and
its intention is clear. Cockburn is also concerned that the interests of the stakeholders involved in or
affected by the use case are protected –  a different consideration to other checklists. It is the case
that use cases have been used as requirements documents in inspections experiments (Fusaro et al,
1997; Miller et al, 1998; Porter et al, 1995; Regnell et al, 2000). However, the focus of these papers
is on generic checklists and scenarios of ways in which to approach inspecting the documents, i.e.
perspective-based reading. In contrast, our checklist is tailored to the use case description. There is
only one other reported empirical study that we are aware of that examines a tailored use case
checklist in experimental conditions (Anda and Sjoberg, 2002).

Table 3 compares the Use Case Checklists available in terms of how they refer to the Description
only. Therefore, other elements such as those relating to Diagrams are not considered here since
they are out of scope for our specific purposes. The top row in Table 3 shows how the checklists
compare to the elements in ours (Table 2). If a checklist considers Coverage but only its Span
element, then there will only be reference to Span and a short description of how it is addressed
(though the authors may not use the terminology we do). For example, Anda and Sjoberg (2002)
address the Coverage aspect in terms of Span by asking whether there are any missing inputs or
outputs or missing variations. The last column in table three, ‘Other’, is for those aspects that might
be covered by other checklists that we do not consider.

In terms of Coverage, all authors ask whether the description has enough information to ensure
its completeness (Span) though only Wiegers (2003), Kamphan (2003) and Klariti (2003) consider
if too much information is present (Scope). Indeed, Wiegers and Klariti address the use case as a
whole in terms of whether the use case is a discrete task. Kamphan agrees and goes further to the
depth that we consider: are all events necessary for communicating the transaction? Tervonen
(2003) considers Span, asking that only a typical way of using the system is described. Though
Table 3 shows that Cockburn (2001) explicitly addresses the Scope of the description, he has a
different interpretation of its meaning. Cockburn describes Scope as: “Does the use case treat the
system mentioned in scope as a black box? (The answer must be yes if it is a system requirements
document, but may be no if the use case is a white box business use case). If the system in scope is
the system to be designed, do the designers have to design everything in it and nothing outside it?”
(p. 212). This does not necessarily address whether enough information has been included in the
description to reach its goal and is more concerned with abstraction.

Aspects of Cogent are considered by all. However, it is only Anda and Sjoberg (2002) that
address all three attributes. The other authors all address Rational Answer. Kamphan and Cockburn
also consider Dependencies. Tervonen looks at the overall use case document, asking that it have a
proper structure of a beginning, middle and end. Whether this refers to the Text Order is unclear.

The clear difference in the checklists compared to ours, is that none suggest variation paths
should be kept out of the main flow of events, except McBreen (2001), who states that all
recoverable failures should be recorded as extensions. Though Anda and Sjoberg consider whether
all Variations have been documented, they do not state that these should not appear in the main flow
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of events. To allow alternative paths as part of the main flow of events will add complexity and
increase the risk of misunderstanding the ‘happy day scenario’ (Schneider and Winters, 1998).
Cockburn explicitly checks whether the use case permits the right variations in the sequencing of
the description but does not address whether these need to be in a separate section to the main flow
(though his pass/fail list does address extension conditions).

All authors consider Abstraction, noting that design and implementation should not be part of use
case descriptions (unless the use case is about internal design – McBreen and Cockburn). Tervonen
asks that the use cases are concrete and specify the most important functional requirements.

Though it can be seen that all checklists address Language, most are ambiguous as to what
unambiguous language might be. Tervonen considers that the use cases be “clear”, presumably
unambiguous. McBreen, though, suggests the use of active verb phrases. Cockburn asks that it
should be clear who is responsible for actions; typically this is clearer in an active sentence, rather
than passive. In an earlier work, Anda et al (2001) present style guidelines as suggested by Achour
et al (1999) in a reduced format as recommended by Cox and Phalp (2000). Cockburn also presents
grammar guidelines elsewhere in his book.

Consideration of Alternatives: almost all authors suggest the Alternatives/Exceptions should be
feasible or at least required (Cockburn), except McBreen, who notes that all recoverable failures
should be recorded. Tervonen does not address this facet.

Finally, all the authors consider other aspects, such as pre- and post-conditions and goal success
and failure. We have chosen to ignore these simply because we are interested in the dialogues or
flows of events and have assumed that pre- and post-conditions and triggers are correct, consistent
and complete in this instance.

2.2 Types of Defects
To quantify the differences in the checklist (Table 2) in terms of their considered ease of detection,
we decompose the list into three components in terms of their impact upon the problem: (a) Minimal
Impact (internal to the use case), (b) Specification Impact (though the use case is still expected to
meet the requirement), and (c) Requirement Impact (the effects desired in the problem domain are
not achieved) – this is the most severe. Impact refers to the distance from the use case in the problem
space that defect can affect. The further the distance, the greater the risks. Clearly if there is simply
a typographical/grammatical mistake, then this is less likely to affect the overall success of the
project. However, if there is something just wrong in the use case description such as a missing
piece of critical information (span in Coverage) then its impact is at the requirement level and it is
more severe. Table 4 shows the categorization of defects according to our checklist. 

Use Case Description impact. Consistent Language is important for readability of the use case
description. It is unlikely that grammar issues cannot be resolved from within the use case model.
Consistent Structure: Sequence is concerned with the correct labelling (numbering) of events in the

Use Case Description Impact Specification Impact Requirements Impact 

Consistent Language Consistent Abstraction Coverage
Consistent Structure: Sequence Consistent Structure: Variations Cogent
Alternatives: Numbering Alternatives: Viable 

Table 4: Categorization of Checklist Defect Types
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main flow and is entirely internal to the description. Consideration of Alternatives: concerns the
numbering of alternative events in relation to main flow equivalents and is entirely internal to the
description.

Specification impact. Consistent Abstraction is considered a specification issue in that there is a
danger of mixing problem domain / internal design detail into the specification task where it is not
always appropriate. Consistent Structure: Variations in the main flow might affect the specification
by wrongly ordering events or assuming transitive dependencies where there are none.

Requirements impact. Coverage: Scope and Span refer to the completeness of the requirement. If
too much or too little information is included in the description it is possible that part of the
requirement will be missed or a new, unwanted requirement added. Cogent: Text Order has an
impact on the order of events at the interface of the machine. The requirement may or may not be
met but the order in which things are done as a result of the wrong ordering could at its most simple
just reorder a task, affecting usability of the tool, or it might go further into the World and affect the
requirement. An example from a use case description in the reported experiment (Section 3) shows
the ejection of cash occurring before the ejection of the card from the ATM. This does not meet the
security requirements since the risk of forgetting the card is greatly increased if the money comes
first. Indeed, this was a recognised design flaw in the earliest ATMs. Cogent: Dependencies
considers whether a use case terminates as expected. If it does not then the requirement will not be
met. Cogent: Rational Answer examines whether a step or series of steps makes sense in terms of
the requirements for the system or even if the steps are implementable (Adolph et al, 2003).
Consideration of Alternatives: Viable is similar to Cogent: Rational Answer. It explores where the
alternative / exception path is feasible and complete. If it is not, it will not meet its requirement.

3. EXPERIMENTAL DESIGN
We conducted an experiment that took the form of a two-stage review process, with the treatment
being the use of the checklist of Table 2. The control group applied an ad hoc approach where they
were provided with no guidance except requirements elicitation notes and the use case model1. A
pilot study was conducted prior to the experiment to assess the suitability of the experimental
design, the instrument, the time slots, the questionnaires and the clarity and difficulty of the tasks.
The pilot subjects were PhD students experienced in inspections. Minor adjustments were made to
the materials such as simplification of the use case descriptions and checklist, including examples,
and the time slots were deemed sufficient for the experiment. 

3.1 Experimental Subjects
As can be seen in table five, there are two groups, group A (the control) of 73 subjects and group B
(the treatment) of 79 subjects. The subjects are final year undergraduate computer engineering and
software engineering students undertaking a course in Total Quality Management (TQM), of which
software inspection is taught. The subjects were taught about use cases as a normal part of their
course and many are experienced users. As part of this tuition, subjects were taught about defects
in use case descriptions in general – no reference was made to the checklist. The experiment was
conducted in the normal tutorials of the TQM course over a period of four days. Nine tutorial groups

1 Note that although we compare an ad hoc approach against our checklist, we do not suggest that the other checklists
discussed in Section 2 of the paper might be inferior to ours in locating defects; they are simply not tested here.
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were randomly assigned to either the control or the treatment with the only proviso a relatively
equal number of subjects in each experimental group. 

All subjects were presented with a consent form asking their permission to use any data from
the experiment prior to the experiment. Those who did not sign the consent forms (four students)
are not included in the analysis. Three other subjects’ results are also discarded because they arrived
late for the experiment.

3.2 Course of the Experiment
The experiment is in two parts, as described in table five, showing a two-stage review: individual
review followed by group review, with one group, B, the treatment, and group A, the control. In the
first part, subjects were presented with a ‘typical’ requirements elicitation document – this took the
form of meeting notes between the development team and the customers (in a form suggested in
Bray, 2002). The subjects were also presented with a use case model (diagram and corresponding
descriptions) derived from the requirements elicitation document. The treatment group was also
given the checklist as shown in Table 2. The treatment group subjects were not aware of the
instrument (checklist) prior to the experiment but all experimental subjects were familiar to the idea
of checklists, having been taught about and used a checklist for code inspections in an earlier part
of the TQM course. Subjects had 55 minutes to complete the individual inspection activity where
they recorded the defects on a purpose-made defect form. And possible solutions – in an attempt to
make sure the subjects avoided recording defects in a ‘casual’ manner and to check whether false
positives were identified. If they were, this was not taken into account in the final analysis but was
checked upon to make sure the subjects were providing credible answers. The subjects then had five
minutes to complete a short questionnaire about the inspection they had just conducted. 

The subjects were then given a ten-minute break before conducting the second part of the
experiment. This was a group inspection activity. Subjects were randomly assigned into groups of
three (or four, rather than two) at that moment. They were given thirty minutes to complete the
inspection. The subjects were not assigned roles at the start of the inspection since we were
interested in how the groups would work together to complete the task. After the thirty minutes, the
subjects were asked to complete a second questionnaire asking about the group inspection activity.
In the following two weeks, after analysis of the defect data, the subjects received feedback
regarding the experiment and their success in the tasks.

The subjects were presented meeting notes as an initial requirements elicitation document. They
were also presented a use case model of a simplified ATM (derived – except for introduced defects

Group A (control – ad hoc) Group B (treatment - checklist)
(73 subjects) (79 subjects) 

Task Time  Task Time 
(min) (min) 

Individual Inspection 55 Individual Inspection 55

Individual Questionnaire (on individual Individual Questionnaire (on individual
inspection activity) 5 inspection activity) 5

Group Inspection 30 Group Inspection 30

Individual Questionnaire (on group Individual Questionnaire (on group 
inspection activity) 5  inspection activity) 5

Table 5: Experimental design, subject numbers and time scales
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– from the elicitation notes). Though the ATM is occasionally considered inappropriate for
requirements case studies (Lauesen, 2002), we find the ATM suitable for use cases since use cases
are primarily a means of describing system external behaviour. There are five use cases described
in total. The defects are not evenly placed among the five. The number of defect types introduced
are, seven use case, four specification and nine requirements defects. The experimental materials
and data can be found at Cox et al (2004).

3.3 Hypotheses
There are ten null hypotheses, as described below. Hypotheses H10-H40 refer to the overall results
of the experiment – there is no distinction made between types of defect. The subsequent six
hypotheses address the different defect types separately. 

H10: Use of the checklist will find similar numbers of defects to an ad hoc approach in the
individual inspection task.
H20: Use of the checklist will find similar numbers of defects to an ad hoc approach in the group
inspection task.
H30: The ad hoc group inspection task will find similar numbers of defects to the ad hoc individual
inspection task.
H40: The checklist group inspection task will find similar numbers of defects to the checklist
individual inspection task.

H50: Use of the checklist will find similar numbers of Use Case defects to an ad hoc approach in
the Individual inspection task.
H60: Use of the checklist will find similar numbers of Use Case defects to an ad hoc approach in
the Group inspection task.

H70: Use of the checklist will find similar numbers of Specification defects to an ad hoc approach
in the Individual inspection task.
H80: Use of the checklist will find similar numbers of Specification defects to an ad hoc approach
in the Group inspection task.

H90: Use of the checklist will find similar numbers of Requirements defects to an ad hoc approach
in the Individual inspection task.
H100: Use of the checklist will find similar numbers of Requirements defects to an ad hoc approach
in the Group inspection task.

The alternative hypotheses are two-tailed. We would like there to be a positive directional
significance – the checklist approach is expected to find more defects than the ad hoc – but we
cannot expect this, especially since there is contradictory evidence on the effectiveness of use case
inspection checklists (Anda and Sjoberg, 2002). The hypotheses were tested by taking counts of the
defects identified and comparing them. As this is a simple comparison of samples, we used the t-
test for significance testing, but checked for an even distribution beforehand.

4 RESULTS
Table 6 describes the mean number of defects found and standard deviations (SD) by both the
control (individual and group A) and the treatment (individual and group B). It can be seen that the
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application of the checklist found more defects than an ad hoc approach. Note that there are 20
defects in total in the use case descriptions. (One of the authors independently assessed the use case
descriptions for defects. The other authors checked the overall statistical results for validity.)

The mean number of defects found is relatively low for all inspections. Only the treatment group
inspection found on average half the number of defects. However, it is clear that the use of the
checklist does find more defects than the ad hoc approach. Group B’s individual inspection mean
(7.7) is only marginally small than Group A’s group inspection mean (7.8). The Standard Deviations
show a large amount of variance from the means, especially for group A’s individual inspection (SD:
2.48), since its mean is only 5.6. This indicates a wide variation in numbers of defects found by the
subjects. The hypotheses are significance tested by independent sample t-tests. Alpha is set at 0.05.
The results are described in Table 7. 

Table 7 shows that the null hypotheses have been refuted. Alternative hypothesis one is found
to hold true. The individual mean of the checklist group was significantly higher than that of the ad
hoc individual scores. This is also true for alternative hypothesis two, when comparing groups. This
seems a straightforward case of the checklist being better than the ad hoc. The distribution is
relatively normal for both groups in terms of the total number of defects identified (Figure 1, left)

Group A (control) Mean SD Group B (treatment) Mean SD 

Individual inspection 5.6 2.48 Individual inspection 7.7 2.56 

Group inspection 7.8 2.61 Group inspection 10.4 1.89 

Hypothesis Significance 

H1: B individual Total - A Individual Total != 0 p <= 0.0001 

H2: B group Total – A group Total != 0 p = 0.0004 

H3: A group Total – A individual Total != 0 p = 0.0012

H4: B group Total – B individual Total != 0 p <= 0.0001

Table 6: Mean and standard deviation of defects found

Table 7: Results of t-tests on the hypotheses

Figure 1: Boxplots for total defects identified by individuals (left) and groups (right)
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in the individual task. Group A has two outliers of 12 defects found. This does not affect the analysis
since there is already a significant difference. Clearly the median for group B is higher than for A.

In terms of group performances, Figure 1 (right) shows a similar difference in medians though
the distribution for group B is much narrower and more even than in the individual part, indicating
more agreement between groups than individuals (though there are many more individuals than
groups, of course). Note that group A no longer has outliers showing a more even distribution. There
is no overlap in confidence intervals.

4.1 Comparison of Real and Nominal Groups 
Nominal group defects are the number of different defects identified by individuals prior to the
group meetings. Research shows that the number of nominal defects identified is higher than or the
same as the number of defects identified by the actual (real) groups (Porter et al, 1995; Votta, 1993).
Biffl and Halling (2003) further show that a mix of inspection techniques yields more discovered
defects for nominal teams than those employing only one type of technique. To compare the perfor-
mance of real and nominal groups, we randomly selected eight groups from the control group and
eight from the treatment group to assess whether this was the case. We found that the unique number
of defects identified by the individuals (the nominal) was in fact higher than those identified by the
same individuals as a group in all but two groups (one a control group, the other a treatment group)
where the same numbers of defects were identified. 

4.2 Categorizing the Defects
We now categorize the defects as described in Section 2.2. The defects are categorized by the
severity of impact: Use Case impact (least severe), Specification impact and Requirements impact
(most severe). 

An example of Use Case impact taken from the experimental material:

ACCESS ATM

Actors: User
Context: User wants to use the ATM.
Pre-condition: ATM in ready state for new User

1. User inserts card into ATM.
…
5. Customer selects account. (Consistent Grammar : synonym: User UC)
6. ATM displays User options.
…
Event 5 shows a Customer actor whereas the Actor is listed in the template above as User. It is
unlikely that this Grammar mistake in this particular problem context will affect the success of the
machine in meeting the requirements.

An example of Specification impact taken from the experimental material:

For the same use case Access ATM:
…
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2. ATM asks for a PIN.
3. User types in the numbers of his PIN and presses the Enter button (Consistent Abstraction SPEC
– this is interface design, should just be: User enters PIN into ATM; Grammar: his: remove UC)
…
Event 3 contains two errors, one a use case problem and the other a specification concern: “presses
the Enter button”. This describes interface design and is a Consistent Abstraction mistake.

An example of Requirements impact taken from the experimental material:

CHANGE PIN

Actors: User
Context: User wants to change their PIN.
Pre-condition: User already logged onto the ATM

Main Flow of Events:

1. User selects ‘Change PIN’. (Span : no reference to enter current PIN REQ)
2. ATM prompts her to enter new PIN. (Grammar: pronoun; User UC)
…
There is an event missing between 1 and 2 where the ATM should prompt the User to re-enter their
current PIN, as stated in the requirements.

It is not always straightforward to determine whether a defect is a use case, specification or
requirement defect, since this is dependent upon the problem being solved. As an example, the
following snippet is taken from a use case in the experiment (use case 2):

5. ATM releases cash.
6. User takes cash.
7. ATM releases card.
8. User takes card.

The order of the events here is incorrect. This appears to be a specification issue, ordering the
way in which materials are released from the machine because, after all, the User gets both the cash
and the card back. However, this is a requirement problem. Some of the first ATMs worked in the
order described. There was a high card loss rate or cards being retained by the ATMs. Users were
taking their money and leaving, forgetting about the card. Banks soon realised this and made it a
requirement that the card must be returned to the User before anything else was ejected, be it cash
or receipt. However, some ticket machines, such as at railway stations, will issue a ticket before
returning any change, others will return change with the ticket and some issue change whilst the
ticket is being printed. The problem you are trying to solve will determine what is a critical
requirement and what is not.

Table eight shows that the ad hoc approach (A) identifies few Use Case defects: 23 and 36
percent of Use Case defects were identified respectively for individual and group inspections. When
compared to the checklist approach (B), 47 and 64 percent respectively, it is clear that B identifies
more Use Case internal defects. This is not the case for Requirements defects. The ad hoc approach
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identifies only slightly fewer defects in the individual task (42 to 44 percent respectively) than the
checklist approach. In the group task, however, the ad hoc group A identifies a larger percentage of
requirements defects than group B (55 to 49 percent respectively). The identification of
Specification defects is not too successful by either ad hoc or treatment. 

The standard deviations (SD) show a similar variance for both groups. Individually, both groups
A and B are similar. Though they are similar, the total counts of defects are quite different between
the groups except for Requirements defects. The variation in individual defects counted is minimal
(on average 1.5 from the mean for group A, which is 3.8, and 1.4 for group B, whose mean is 4),
indicating that the variation in numbers of defects found is slightly higher for A. Group A’s
deviation in the group task is larger than group B’s though it does find more defects on average.
Group B has less variation in the numbers of defects found in the group task since its deviation is
only one away from the mean. The question now arises as to whether there is a significant difference
between the ad hoc and checklist approaches in the types of defects identified. Independent sample
two-tailed t-tests were applied (alpha = 0.05), as shown in Table nine. 

It is interesting to explore the distributions for the Requirements defects to assess whether any
skewness has affected the outcome of the tests. Figure 2 (left) shows boxplots for Individual marks
for groups A and B. As can be seen from the confidence intervals (shaded areas) in the box plots,
there is overlap showing that there is no significant difference between the groups. However, it is
clear that there is an uneven distribution of defects for the treatment group (B). The third percentile
and the median are the same (4). There are also a number of outliers. However, when outliers are
removed from the analysis the result is still insignificant; as such they remain in the equation. When

Individual A Use Case Spec. Req. Individual B Use Case Spec. Req. 

Total 120 14 275 Total 240 79 289 

Mean 1.64 0.19 3.77 Mean 3.29 1.08 3.96 

Percentage 23.43 4.75 41.89 Percentage 47 27 44

SD 1.67 0.43 1.46 SD 1.56 0.72 1.37 

Group A Use Case Spec. Req. Group B Use Case Spec. Req. 

Total 55 9 108 Total 121 40 120 

Mean 2.50 0.41 4.91 Mean 4.5 1.5 4.4 

Percentage 35.7 10.3 54.6 Percentage 64.29 37.50 48.89

SD 1.97 0.59 1.48 SD 1.40 0.80 1.05

Table 8: Breakdown of totals, means, percentages and standard deviations for defect types identified

Data Tested Significance 

H5 A, B Use Case p <= 0.0001  

Individual H7 A, B Specification p <= 0.0001  

H9 A, B Requirement p = 0.64 

H6 A, B Use Case p = 0.0003  

Group H8 A, B Specification p <= 0.0001  

H10 A, B Requirement p = 0.22

Table 9: Significance values for Defect Types
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comparing the number of requirements defects found in the group task, Figure 2 (right) shows there
is no significant difference: the confidence intervals overlap. The distribution is relatively normal
for both A and B. Group A has a wider range than B. B also has an outlier of two. Its removal does
not alter the significance and thus is included.

The treatment has found far more use case related and specification defects than the control.
This is good in terms of clarifying the description, for instance in removing grammar problems that
might introduce ambiguity. However, the checklist has not improved defect detection where it really
matters, in the identification of requirements defects. However, the counter point argues that since
similar numbers of requirements defects were found and significantly more use case and
specification defects also identified, the checklist has been at least a partial success. This implies
that the checklist needs to be tailored towards addressing requirements concerns, and aspects that
address the use case and specification might be reduced or removed entirely. 

4.4 Validity Threats
Construct validity primarily addresses the instrument (our checklist) whilst the other threats address
concerns with the experiment. 

Construct Validity. This threat considers whether the design of the instrument is flawed or that the
outcomes were biased by the design of the instrument. There is one concern for this experiment: the
instrument itself (the derivation of the checklist). The type of defect found might be as a
consequence of the design of the checklist. It is suggested that this is not a threat because the
number of requirements defects found by the treatment does not differ significantly from those
found by the control group. Indeed, the treatment found significantly more specification defects
than the control. Though the treatment also found significantly more use case (syntactic) defects
than the control, this is appears to be somewhat symptomatic of use case checklists since there is an
inevitable concern with comprehension of any natural language text. Whether a defect is a
requirement problem, a specification problem or, indeed, just a use case problem can be dependent
upon the problem being examined. However, it is certainly the case that aspects of Grammar, for
instance, are hardly likely to cause noticeable problems in the real world. Missing information or
unnecessary information will though.

Conclusion Validity. Conclusion validity considers whether the conclusions drawn from the
statistical results are valid or are biased by the issues affecting the treatment and the outcome. The

Figure 2: Boxplots for Individual (left) and Group (right) Requirements Defects for A and B
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random heterogeneity of subjects might affect the outcome. However, the large sample of subjects
is drawn from the same community: Fourth year undergraduate students who have studied similar
courses in their degrees.

Internal Validity. Internal validity is threatened by unknown influences on the causal relationship
between the treatment and the outcome. If they are not accounted for they may invalidate the results.
The History of the experiment is a potential threat since it spanned a number of days. However,
there is no indication that subject results improved (the threat that subjects having taken part in the
experiment might pass their knowledge gained onto those awaiting participation – there appears to
be no diffusion of treatments). The experiment lasted the length of a normal tutorial: two hours. The
subjects were used to working that length of time on individual and group tasks. The experiment
followed that pattern. Thus maturation was not a problem. However, a few subjects noted that the
second part of the experiment needed a little more time for fuller discussion. No subjects dropped
out of the experiment once they had begun – mortality was not an issue.

External Validity. Since the experimental subjects are students, the results are potentially not
generalisable to practitioners. The nature of the problem itself was not unknown to the subjects; a
large number commented that they used their experience of ATMs to help in finding defects. The
setting for the experiment might be considered a threat in that it is not in the confines of an industry
location such as an office or meeting room. However, the locations themselves were familiar to the
subjects since their tutorials are regularly at these locations and take a very similar format to that of
the experiment. In any case, the classroom is a typical location for laboratory experiments of this
nature.

5. CONCLUSIONS, IMPLICATIONS AND FUTURE WORK
This paper described an experiment that compared inspection techniques for detecting defects in use
case descriptions. It is shown that the checklist found more defects than the ad hoc approach and
that groups found more defects than individuals (though less than nominal groups). However, when
the defect types are categorized, there was no significant difference between the control and
treatment groups in the identification of requirements defects. The treatment found significantly
more use case defects (typically syntactic in nature). It is also the case that the control found more
requirements defects in the group task than the treatment. 

The implications are that when one presents a checklist to be used in use case inspections, if it
contains elements of a syntactic nature, these are the defects that will be discovered. Syntactic
defects are easier to find than semantic defects. It is unsurprising then that the control group found
more requirements defects (semantic) than use case (syntactic). (By semantics we do not mean the
underlying rules that govern use cases, such as the work of the OMG (2003) but requirements –the
real world effects and implications for the problem being addressed.) The control group was not
guided in this direction and thus had to rely on the requirements document supplied and their own
experiences. Qualitative feedback (from post-test questionnaires) suggests that the majority of
control subjects did just this, whereas the majority of treatment subjects relied on the checklist and
their experience to identify the defects, not upon the requirements document itself. The results of
this experiment support the work of Travassos et al (1999) who stated that requirements-related
inspections should focus on semantics and not syntax. We add a note of caution to this: a poorly
written requirement or use case description is likely to be misunderstood or contain ambiguities and
so there is a necessary relationship between semantics and syntax, or requirement and its
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expression. As such, the checklist was not an entire failure. Its use helped identify significantly
more use case and specification defects and similar numbers of requirements defects to the control
group.

Nonetheless, it is more important to find and resolve requirements problems than syntax
problems since their impact of the success of the project is vastly greater. As such, our intention is
to pursue a course of research to propose an entirely requirements-focussed use case checklist and
will conduct further empirical studies to assess its efficacy when compared to other more typical
checklists, such as the ones presented in this paper. This is on-going research and we will present it
in the future.
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