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ABSTRACT
Memory corruption errors lead to non-deterministic, elusive
crashes. This paper describes ARCHER (ARray CHeckER)
a static, effective memory access checker. ARCHER uses
path-sensitive, interprocedural symbolic analysis to bound
the values of both variables and memory sizes. It evaluates
known values using a constraint solver at every array access,
pointer dereference, or call to a function that expects a size
parameter. Accesses that violate constraints are flagged as
errors. Those that are exploitable by malicious attackers are
marked as security holes.

We carefully designed ARCHER to work well on large
bodies of source code. It requires no annotations to use
(though it can use them). Its solver has been built to be
powerful in the ways that real code requires, while back-
ing off on the places that were irrelevant. Selective power
allows it to gain efficiency while avoiding classes of false
positives that arise when a complex analysis interacts badly
with statically undecidable program properties. ARCHER
uses statistical code analysis to automatically infer the set
of functions that it should track — this inference serves as a
robust guard against omissions, especially in large systems
which can have hundreds of such functions.

In practice ARCHER is effective: it finds many errors;
its analysis scales to systems of millions of lines of code
and the average false positive rate of our results is below
35%. We have run ARCHER over several large open source
software projects — such as Linux, OpenBSD, Sendmail,
and PostgreSQL — and have found errors in all of them
(118 in the case of Linux, including 21 security holes).

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Assertion checkers, Reliability, Statistical methods;
D.2.5 [Software Engineering]: Testing and Debugging—
Symbolic Execution
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1. INTRODUCTION
Unsafe languages such as C and C++ are vulnerable to

memory corruption errors. Such errors lead to elusive, non-
deterministic crashes or, worse, can be exploited by mali-
cious attackers to compromise a system. Safe languages such
as Java are also vulnerable. These languages check buffer
accesses at runtime and raise exceptions when errors occur.
However, many of these exceptions are unexpected and re-
main unhandled by the programmer, causing the program
to abort.

This paper describes ARCHER (ARray CHeckER), an au-
tomatic tool that statically catches such memory access er-
rors. ARCHER uses a path-sensitive, interprocedural anal-
ysis to derive and propagate memory bounds and variable
values. It tracks constant relations (e.g., i = 4, j 6= 10

and 0 ≤ k < 20) as well as symbolic constraints between
variables that have unknown values (e.g., j < k < 2 · l).
At every potentially dangerous access — such as an array
index, pointer dereference, or call to a routine that takes
a pointer and explicit size — it uses a custom constraint
solver to evaluate the values used in the operation against
known constraints. It flags constraint violations as potential
memory errors. To increase its reach, ARCHER propagates
these constraints across procedure boundaries on demand.

ARCHER was designed to work on large existing code
bases. It has several key features that make this possible.

No annotations needed. Compared to annotation-
based tools like ESC/Java [10] and LCLint [18], ARCHER
uses statistical methods to extract necessary information au-
tomatically from the source program. Human intervention
is minimal, making it suitable for checking existing code
bases with little extra cost. Of course, ARCHER is ready to
use any annotations that are provided (and makes provid-
ing them worthwhile). However, it does not require them to
obtain good results.

Speed. Two aspects of ARCHER’s design allow it to
handle multi-million line programs. First, it uses bottom-
up interprocedural analysis. By simulating the body of the
C function, it is able to infer a set of constraints that must be



satisfied by callers of the function without re-analyzing the
function body in each calling context. Second, ARCHER
uses a custom constraint solver targeted to linear relations.
We have observed that the vast majority of pointer arith-
metic operations and conditional operations are linear (e.g.,
array indices, loop bounds). We have identified a subset
of essential linear relationships to track with our solver.
Compared to more complex integer constraint solvers (e.g.
Omega [21]) and theorem provers (e.g. SAT [23]), we have
traded precision for speed and predictability. Nevertheless,
preliminary results have shown that our solver is effective at
finding a large class of buffer access errors in real code.

Few false positives. The solver has been carefully tuned
to allow it to suppress common sets of false positives. In
addition, we use error ranking to sort errors from most to
least plausible. Finally, we have developed several heuristics
to minimize the number of false positives reported by the
checker.

Drawbacks. While ARCHER works well in practice, it
has limitations. It is not a verifier. Code that contains errors
can pass through it silently. Conversely, code without errors
can still trigger warnings. The main strategy of ARCHER
has been to find as many bugs as possible while minimizing
the number of false positives. One limitation of the current
system is that it does not understand of C string operations;
these cause many errors, which it will miss. However, we
believe the analysis framework and the solver can be readily
used to analyze null-terminated strings, and a version that
does so is under development.

The next section discusses related work in more detail.
Section 3 gives two examples that illustrate the techniques
needed to find buffer access errors. Section 4 gives an overview
of ARCHER, and Sections 5 and 6 describe the implementa-
tion of the analysis in detail. Section 7 discusses how we use
statistical analysis to infer size fields. Experimental results
are given in Section 8. Finally, Section 9 concludes.

2. RELATED WORK
In this section, we compare ARCHER to existing dynamic

and static approaches to finding memory errors.

2.1 Dynamic Analysis
Dynamic tools instrument the program (source code or

binary) to add buffer bounds checks. This approach has the
advantage that all values are concrete at runtime, so pointer
offsets and buffer lengths are known, and only feasible paths
are considered.

Static analysis has several advantages over a dynamic ap-
proach for large code bases. Unlike a dynamic approach,
static analysis does not require executing code. It can im-
mediately find errors on obscure paths that could otherwise
take weeks of testing to trigger. Some serious security er-
rors may not be triggered at all in testing, only to be uncov-
ered after significant damage is incurred [22]. Further, static
analysis finds bugs in code that cannot be run on a partic-
ular configuration. This feature is important for OS device
drivers because only a small fraction of them can be tested
at a typical site. Finally, dynamic tools typically slow down
execution by a factor of 2-30, making it time consuming to
run test cases and inapplicable to programs that have strict
timing requirements.

Purify [14] performs binary rewriting to add instrumen-
tation to check for buffer access errors, memory leaks, and

many other errors. While Purify is very useful for debug-
ging, it typically slows down program execution by 10x-30x
and also increases memory use substantially. CCured [20]
is a hybrid static-dynamic tool that requires source code.
CCured uses a type inference algorithm to eliminate the
need for many checks, which mitigates the speed penalty to
between 10%-100%, but it also performs fewer checks than
Purify. Jones and Kelly [16] show how dynamic bounds
checking can be done without changing the representation
of pointers, thus maintaining compatibility with binary-only
libraries, but the technique typically slows down programs
by a factor of five or six.

2.2 Static Analysis
Static analysis has traditionally been applied to the prob-

lem of inferring array bounds checks that can be safely elim-
inated [2]. This kind of analysis finds safety checks that are
redundant in safe languages to improve performance. In con-
trast, ARCHER attempts to find memory accesses that are
unsafe in an unsafe language in order to improve robustness
and reliability of programs.

Several static tools have been developed to detect buffer
access errors in C. However, existing tools either (1) depend
heavily on user annotations that limit their applicability to
existing code bases (e.g. LCLint [18], CSSV [6]), (2) pro-
duce a large number of false positives (e.g. LCLint [18],
BOON [24]), or (3) use heavy-weight theorem provers that
do not readily scale to large code bases (e.g. CSSV [6]).
Furthermore, these tools do not statistically infer checking
information as described in Section 7.

LCLint [18] detects buffer access errors using a simple
static dataflow analysis along with annotations provided by
the user. It relies on annotations for all interprocedural
checking; this annotation burden makes it difficult to apply
to large code bases. This can be seen in the relatively small
number of errors it finds — three errors in early versions
of bind and wu-ftpd, two of which were previously known.
Further, the simple analysis employed by LCLint resulted
in a large number of false positives despite the significant
amount of information provided by the user.

BOON [24] employs an interprocedural analysis that finds
buffer overruns caused by misuse of string manipulation
functions. The tool performs a flow-insensitive pass over
the abstract syntax tree to derive a set of constraints for-
mulated by treating strings as an abstract data type. While
the analysis is efficient, it loses a great deal of precision,
which is reflected in the high false positive rate – BOON
found 4 off-by-one bugs with 40 false alarms in Sendmail
8.9.3.

Dor et. al. [6] describe a technique that can handle string
manipulation functions as well as pointer arithmetic and
that aims to find all memory errors. The technique uses an
expensive integer analysis algorithm and requires extensive
annotations. The authors use the tool to find 8 unclean
memory accesses with 8 false positives in some small string-
intensive programs. The speed of the solver was a bottleneck
– currently reported results indicate the analysis takes min-
utes of CPU time and hundreds of megabytes of memory to
process C functions roughly 100 lines of code in size.

ESC/Java [10] is an annotation-based tool that uses a
theorem prover to look for violations of specifications pro-
vided by the programmer. The tool has been used in [4] to
annotate and rediscover two known security vulnerabilities.



1 /* 8.12.7/sendmail/daemon.c */
2 . . .
3 /* get result */
4 p = &ibuf[0];
5 nleft = sizeof ibuf − 1;
6 while ((i = read(s, p, nleft)) > 0) {
7 p += i;
8 nleft −= i;
9 *p = ’\0’;

10 if (strchr(ibuf, ’\n’) != NULL | | nleft <= 0)
11 break;
12 }
13 (void) close(s);
14 sm clrevent(ev);
15 if (i < 0 | | p == &ibuf[0])
16 goto noident;
17 if (*−−p == ’\n’ && *−−p == ’\r’)
18 p−−;
19 *++p = ’\0’;
20 . . .

Figure 1: A sample bug from Sendmail version 8.12.7 that
involves pointer p pointing into the buffer ibuf. The error
occurs when a single ‘\n’ character is read at line 6.

However, the annotation overhead of ESC/Java is relatively
high: the authors estimate that 1 programmer hour is re-
quired for every 300 lines of code. A great deal of research
has gone into deriving loop invariants [11] and automating
the annotation process [9], but the manual cost of using the
tool remains prohibitively high for large code bases.

PREfix [3] is a static tool that finds a variety of mem-
ory access errors without annotations. ARCHER’s anal-
ysis style is similar to that of PREfix: both analyze func-
tions in bottom-up order and generate a summary with con-
straints for each analyzed function. However, the analysis
performed and the class of errors being targeted is different.
PREfix targets a broader range of errors than ARCHER —
references to uninitialized or freed memory regions, NULL
pointer dereferences, and memory leaks by tracking memory
regions of known size. However, it appears that ARCHER
is more powerful for the memory overflow errors it targets,
since it tracks properties such as buffer lengths and pointer
offsets with a symbolic solver. Furthermore, PREfix relies on
the user to provide models for library functions whose source
code is not available; ARCHER needs much less modelling
effort, and employs a statistical analysis to derive a large
number of function interfaces automatically.

3. TWO MOTIVATING EXAMPLES
In this section, we use two representative samples of errors

we have detected with ARCHER to illustrate the key fea-
tures we find necessary in order for a non-annotation based
analysis to be effective. These errors were found in recent
releases of Sendmail and the Linux kernel. Both were re-
ported to and confirmed by their developers and patches
have been generated to correct them.

Figure 1 shows an example of an error we found in Send-
mail 8.12.7. Here, the pointer p is initialized to point to the
start of the buffer ibuf at line 4. If the call to read() at line
6 reads a single character ‘\n’, p will be incremented by one
at line 7 and then the loop will exit. The error occurs at line
17, where the second decrement of p causes it to point to

1 /* 2.5.53/include/linux/isdn.h */
2 #define ISDN MAX DRIVERS 32
3 #define ISDN MAX CHANNELS 64
4 /* 2.5.53/drivers/isdn/i4l/isdn common.c */
5 static struct isdn driver *drivers[ISDN MAX DRIVERS];
6 static struct isdn driver *get drv by nr(int di) {
7 unsigned long flags;
8 struct isdn driver *drv;
9 if (di < 0)

10 return NULL;
11 spin lock irqsave(&drivers lock, flags);
12 drv = drivers[di];
13 . . .
14 }
15 static struct isdn slot * get slot by minor(int minor) {
16 int di, ch;
17 struct isdn driver *drv;
18 for (di = 0; di < ISDN MAX CHANNELS; di++) {
19 drv = get drv by nr(di);
20 . . .

Figure 2: A sample error from Linux kernel version 2.5.53
that involves multiple functions and can potentially crash
the system.

&ibuf[-1], resulting in an out-of-bounds read. If ibuf[-1]
happens to be ‘\r’ then it will be overwritten by ‘\0’ at
line 19, an out-of-bounds write.

Figure 2 shows another sample bug we found in a recent
release of the Linux kernel. Here, get slot by minor calls
get drv by nr with parameter di, which can go from 0 up
to 63 (ISDN MAX CHANNELS-1). An out-of-bound memory ac-
cess might occur at line 12, where get drv by nr uses di as
an index to access drivers — a global array with only 32
(ISDN MAX DRIVERS) elements. This is a potentially danger-
ous system-crashing bug that would be missed in testing ex-
cept on certain hardware configurations with an abundance
of ISDN devices.

The goal of ARCHER is to accurately pinpoint these er-
rors statically. In order to achieve this goal, the analysis
needs to be

• Interprocedural — in the Linux example in Fig-
ure 2, the definition and use sites of the buffer index
di lie in two different functions. We have found over
30 instances of interprocedural buffer access errors —
roughly one fourth of the total number of errors found
in Linux.

• Fully symbolic — in Figure 2, to analyze the function
get drv by nr, we need to infer the constraints that
the unknown parameter di must satisfy in order for
the access drivers[di] to be safe. In order to do that,
we need to represent the value of di symbolically and
proceed with the analysis without knowing the exact
value of it.

• Path sensitive — empirically, infeasible paths cause
many false positives. We use path-sensitive analysis
to eliminate some classes of false paths. Furthermore,
the values of key properties of a typical buffer access
(such as the offset of p at line 18 in Figure 1) often
depend on specific program paths leading to it. A
path-insensitive analysis would either lose these errors
or flag a large number of false positives.



• Context sensitive — clearly, the range of possible
values of the parameter di in get drv by nr partly de-
pends on its caller. For example, there are four calls
to this function in that source file, only two of which
can be confidently flagged as errors.

• Aware of pointer aliases for buffers — in order
to detect the error in Figure 1, we need to know not
only the fact that p is an alias to the buffer ibuf (thus
both share the same length), but also the exact offset
of p relative to &ibuf[0].

4. ARCHER OVERVIEW
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Figure 3: An Overview of the Analysis

This section gives an overview of ARCHER. The core of
ARCHER is an interprocedural, path-sensitive and context-
sensitive data-flow analysis. It consists of three pieces: (1) a
translator that transforms C source code to a canonicalized
intermediate representation; (2) a traversal module, which
traverses this representation and, (3) a solver called by the
traversal module to accumulate and solve constraints en-
countered during traversal. We give a brief overview of each
stage below; the next two sections describe the traversal
module and solver in more detail.

Figure 3 gives a flow-chart of the three steps involved in
using ARCHER to check a program. The first step uses a
modified version of the GNU C Compiler (gcc 3.1) to parse
the source code into abstract syntax trees (AST). GCC was
chosen because of the large amount of open source software
it can process. The trees are then serialized and dumped
onto the disk for further processing. The next two steps,
described below, consist of 14KLOC in O’Caml.

The second step transforms the trees into a canonical rep-
resentation. The transformation is inspired by tools such as
CIL [19] and the Microsoft AST toolkit [5]. In this step,
we introduce temporary variables to eliminate side-effects
in expressions and flatten nested function calls. We also
convert short-circuit operators such as &&, ||, and ? : into if-
else statements to eliminate control flow within expressions.
The result is a C program that is semantically equivalent
to the original code, but with a reduced number of syn-
tactic constructs. From these canonicalized trees we con-
struct a control-flow graph (CFG) for each function with
sets of AST trees as basic blocks and branching statements

as edges. During this stage we also build an approximate
program callgraph. The callgraph is approximate because
we do not track function pointers. As will be shown in the
next section, while the loss of precision may lead to missed
errors (false negatives), it will not increase the number of
false-positives.

The third step is where the action happens. The analysis
is carried out in bottom-up order on the callgraph, inspect-
ing each function for potential errors. Cycles in the call
graph are broken at arbitrary places. As stated above, anal-
ysis partitions into two pieces, the traversal module and the
solver. The traversal module performs a randomized, depth-
first search to exhaustively explore each function’s control
flow graph. Each statement in the CFG causes the traver-
sal module to do one of several actions, depending on the
statement type:

1. A boolean condition: the solver is called to evaluate
the conditional expression of an if-statement, loop,
or switch statement. If the solver can determine the
value, the traversal module will prune away any infea-
sible control flow edges controlled by the expression.
When following each edge, the solver state is updated
accordingly to reflect the constraint imposed by the
path condition.

2. A memory access: the solver is queried to see if the
memory access can potentially go out of bounds. If so,
an error is emitted. If the solver cannot demonstrate
that the access is unsafe, the traversal module emits no
error. I.e., ARCHER is not conservative (sound). A
sound tool would emit an error if it could not demon-
strate the access was safe. If ARCHER treated ac-
cesses as “guilty until proven innocent” there would
be an overwhelming number of false positives.

3. All other accesses: the traversal deconstructs the state-
ment into a (possibly empty) set of constraints and
calls the solver to update the solver state accordingly.

Interprocedural analysis introduces the complication that if
a memory access involves a formal parameter, the solver
only knows the possible values of the parameter after exam-
ining all call sites. Thus, the traversal module summarizes
the memory access constraints in such a way that they can
be evaluated as actual parameter values are encountered at
each call site. We call the constraint representation under
which an error could occur a trigger for the function. The
analysis stores triggers in a global database. When it ana-
lyzes a function call, the triggers for the function (if any) are
evaluated against the current set of known constraints. If a
trigger is satisfied, the traversal module emits an error mes-
sage. The next section describes traversal in more detail,
and the subsequent one focuses on the solver.

5. TRAVERSAL IMPLEMENTATION
This section describes the traversal module in more detail.

It first gives a brief overview of traversal, and then focuses
on the exact errors flagged and the handling of loops and
function calls.

5.1 Traversing executable paths
The goal of the traversal module is to enumerate and

check all possible legal program execution paths. However,



in practice it checks both a superset or a subset of legal
paths. A superset because it only prunes impossible paths
if it can determine that boolean conditions the path de-
pends on are unsatisfiable. Since the problem is generally
undecidable, and ARCHER’s analysis has practical limita-
tions, there will be cases where it cannot prune an impossi-
ble path. A subset because it ignores function pointers and
usually does not simulate loops as many times as an actual
run of the program would.

As stated in Section 4, ARCHER analyzes program func-
tions in bottom-up order, doing a depth-first search over
each function’s control flow graph. Starting from the large
scale to the smaller, it works as follows. The analysis min-
imizes the impact of missing summaries for functions yet
to be analyzed by topologically sorting all functions based
on the call graph, and starting the analysis from the leaves
(functions that do not call others). If there is a cycle in the
call graph, we pick the function with the least number of
callees to be analyzed first. In case of a tie, we choose at
random among all candidates.

The analysis processes a function’s CFG using a simple
DFS search starting from the entry block. Its goal is to build
up a knowledge base (stored in the solver state) that tracks
values of and relations between as many scalars, arrays, and
pointers as possible, which it then uses to detect errors and
prune infeasible paths. Initially, this state is empty. As
traversal iterates over each statement in a block in order, it:
(1) evaluates the statement using the current state and (2)
records any side-effects of the statement, producing a new
state. When it reaches the end of a block it either stops
following the path (if the block has no valid successor) or
explores the block’s successors in random order. After it
explores all of the successors, it backtracks to the last block
with an unanalyzed successor and continues exploration. If
there is no such block, the function has been completely
explored and the analysis moves onto the next function.

We describe the handling of loops and conditional expres-
sions in § 5.2 and § 5.4. Unlike some systems (e.g., xgcc [7])
we do not build a memoization cache that records the pre-
vious states a block was reached in. We found that such a
cache was relatively ineffective for ARCHER. Traversal state
includes all variables that we have observed a linear relation
on, either through assignments or conditionals. This set in-
cludes a large number of program variables and, as a result,
it rarely reaches a program point with the same informa-
tion (e.g., at the join point after an if-statement). In reality,
we observe that the performance benefit of using a cache
does not justify its cost (extra memory footprint, time used
to generate fingerprints and compare them, etc). Instead,
traversal of a function stops in exactly one of two cases.
First, if it exhausts all possible execution paths within a
function (modulo some caveats about loops). This is the
common case (ARCHER achieves full path coverage on 96%
of the functions we analyze in Linux). Second, if it exceeds
a pre-determined time limit, which defaults to five seconds.

5.2 Handling loops
The traversal algorithm described so far will only termi-

nate for a small subset of loops — those that iterate a con-
stant number of times. On each iteration the traversal mod-
ule will follow the loop backedge, use the solver to evaluate
the exit condition against the values it is tracking, and stop
when the exit condition is false. For example, it will iterate

the following loop exactly 100 times:
i = 100;
while (−−i >= 0) {

. . . /* loop body */
}

Unfortunately, this simplistic approach will not terminate
for loops that have either unknown termination conditions
or conditions the solver just cannot evaluate. We have two
heuristics to handle these cases.

The first method executes the loop exactly once, based on
the heuristic that loops typically execute at least once. (This
logic mirrors the PREfix’s handling of loop iteration [15].)
It works in three steps. First, it executes the loop body a
single time. Second, on exit, it invalidates the values of all
variables that were assigned to in the loop body. It does
this to prevent false positives — since it does not know how
many iterations the loop would really perform, the values
after just one iteration cannot be trusted to be valid exit
values. Third, it then continues the simulation of the current
path. In the following example:

i = 0; tmp = f(); /* unknown */
while (tmp−−) {

i = i + 1;
}
/* we invalidate the value of i here */

the loop body will be executed exactly once, and i will be
set to unknown on exit.

The second method specializes the first to “iterator loops”
that have the following structure:

for (i = lb; i < ub; i++) {
. . . /* loop body where i is not modified */

}

Using the first technique on such loops needlessly misses
many errors — iteration variables such as i are often used
as indices or offsets for buffer accesses, yet would only be
checked with the value lb (for the first iteration) and in-
validated after the loop exits. Instead, we set the iteration
variable to the range [lb, ub) when we simulate the body
and to ub after the loop exits. (As with the first method,
all other variables set in the loop are cleared on exit.)

In future work, we are planning to implement an induc-
tion variable detection algorithm to find a broader range of
iterator loops and also to get information on other induction
variables.

5.3 Errors
The traversal module attempts to check the safety of array

accesses, pointer dereferences, or calls to routines that access
memory regions specified by a pointer and a size parameter.
It checks an array reference a[i] by querying the solver to
find out the size of the array a and the bound on i. It issues
an error if i is either (1) negative or (2) greater than or equal
to the size of a. For a pointer dereference ∗p, it queries the
solver to determine if the pointer references above or below
the object boundary it was set to point to. If so, it emits
an error. It checks calls to functions that take pointers and
size parameters in a similar manner.

In general, ARCHER will not issue a warning if it does not
know the object size or cannot determine the object offset
of the reference. Since ARCHER only tracks information
within a path, this means that all memory references that
it flags descend from one of the following three sources:

1. An array variable declared earlier in the path.

2. A memory region that was dynamically allocated, or



whose size was otherwise inferred (e.g. by a heuristic)
earlier in the path.

3. A memory region whose size is known from its static
type (e.g., an array structure field).

Errors can either involve these memory objects directly, or
through a pointer that can be traced back to them through
a series of assignments, conditional branches, and pointer
arithmetic operations that happen on the checked path. (The
next section is a bit more precise about what exactly these
operations can be.) These operations can span (multiple)
procedure calls: we summarize unresolved safety conditions
involving function parameters in a global per-function database.
These conditions will be expressed as error triggers–conditions
involving parameters and constants under which a memory
access error could occur. Triggers of a function will be re-
trieved and evaluated at each of its calling contexts. If satis-
fied, an error will be emitted for the buffer access that occurs
within the callee.

No other errors will be flagged in the current version of
ARCHER. In particular, pointers to anonymous memory re-
gions of unknown type from heap data structures will likely
not be checked, since ARCHER will have no idea what their
size is.

5.4 Evaluating statements
Statements important for traversal fall into several partially-

overlapping categories: buffer accesses, assignments, control
flow expressions, and function calls. We described buffer
accesses above. In this subsection, we briefly describe the
effects of the latter three.

Assignment (e1 = e2): is handled by first evaluating e2

against the current solver state, and then binding the result
to e1.

Control flow edges: for blocks with multiple successors
— in C an if, while, for, or switch — the traversal module
uses the solver to evaluate the control-flow condition and
skips any edges it determines to be impossible. It follows
all edges it cannot demonstrate as infeasible, and adds the
condition that would hold on this path to the current solver
state.

Since interprocedural analysis happens in bottom-up or-
der, in many cases we cannot evaluate control-flow condi-
tions that involve or derive from function parameters. When-
ever either an error would be flagged or a potential error
stored in the “trigger database,” the traversal module ex-
amines the current intraprocedural path and collects all con-
ditionals that derive from function parameters into a pred-

icate set for the current path. If the predicate set is non-
empty it is stored along with the potential error in the trig-
ger database so that it can be evaluated at call sites of the
function to determine if the error path is feasible.

Function calls f(a1, . . . an): are processed in two steps.
First, we check for potential violations of interface constraints.
These can be function constraints built into the checker,
such as that the call bzero(p, size) writes the memory
range [p, p + size). Or they can be the triggers described
above that were calculated automatically when we analyzed
f. We check triggers of f by (1) retrieving them from the
database, (2) evaluating the parameters a1 through an in
the current solver state, and (3) issuing a warning for each
trigger satisfied by the values produced.

Second, we conservatively model the side-effects of func-

tion calls on the solver state by invalidating all global vari-
ables and arguments passed by reference. For example, in

a = 3; global var = 0;
p = &b;
r = f(&a, p);

we invalidate global var, a, b, and r after the call to f. The
points-to information is derived using a very simple per-
path alias analysis algorithm. The accuracy of this step can
be further improved by using an interprocedural side-effects
analysis [17].

5.5 Trigger example
In this section, we walk through the bug example in Fig-

ure 2 to illustrate how we generate and test triggers.
The analysis starts from the callee get drv by nr. At line

9, we encounter an if statement with condition (di < 0).
Since the value of di is unknown, we cannot evaluate the
predicate so we schedule both branches for further explo-
ration. The true branch returns control immediately to the
caller, and we backtrack to explore the fall-through branch
under the condition (di >= 0). Since di is a parameter,
we also collect this predicate in the path predicate set for
trigger generation.

The buffer access occurs at line 12, where di is used as an
index into the array drivers. The traversal module tests
the following two constraints for this access

1) di ≥ 0

2) di < 32

The first constraint is satisfied by the path predicate from
the if statement, but the second one is undetermined. For-
tunately, since it only involves parameters and constants, it
can be formulated as a constraint on the function calling
interface and checked at the call sites.

To formulate the error trigger, we conjunct the path pred-
icate set (di ≥ 0) with the logical not of the safety constraint
(¬(di < 32)) to arrive at

(di ≥ 0) ∧ (di ≥ 32).

The trigger will be stored in the trigger database for get drv by nr.
This trigger is tested at line 19, where get slot by minor

calls get drv by nr. The actual parameter di in this case
has range [0, 64) (inferred from the enclosing iterator loop),
which enthusiastically exceeds the allowed range. The trig-
ger for get drv by nr is retrieved, tested, and succeeds (i.e.,
the error’s precondition is satisfied). As a result, we emit an
error for this call.

6. SOLVER IMPLEMENTATION
At the heart of ARCHER is a linear constraint solver de-

signed for common buffer access patterns. This section first
gives an overview of the solver and then delves into the de-
tails of how it tracks the values of scalars (§ 6.2) and various
properties of arrays and pointers (§ 6.3).

6.1 Overview of the Solver
As discussed previously, the solver has two main uses: (1)

to detect infeasible paths and (2) to flag illegal memory refer-
ences. Its main challenge is to do both effectively while scal-
ing to millions of lines of code. We mainly get speed by ag-
gressively specializing the solver to the common-case, while
deliberately backing off on tasks empirically shown as less



VariableBindings : var → scalar | pointer | array

ConstantUpperBound : symbol → const (1)

ConstantLowerBound : symbol → const (2)

ConstantNotEq : symbol → const set (3)

SymbolicUpperBound : symbol → linear dev set (4)

SymbolicLowerBound : symbol → linear dev set (5)

SymbolicNotEq : symbol → linear dev set (6)

linear dev = (a ∗ symbol + b)/c

scalar = const | linear dev

pointer = {length : scalar; offset : scalar}

array = {element size : const; domain : scalar}

Figure 4: An operational view of the solver state. The solver
state consists of seven mappings: VariableBindings maps pro-
gram variables to either a scalar object, a pointer, or an ar-
ray (each of the latter two is represented by a pair of scalar
objects). A scalar object is either a constant or a linear
deviation from a symbol. Symbols represent unknowns or
partially-known values in the program (e.g. variables with
known upper bounds). Mappings 2-7 keep track of this par-
tial information (i.e. constant and symbolic bounds and
disequality information) for each symbol.

relevant. For example, most boolean predicates in branch
statements are simple and our solver can more than ade-
quately prune most impossible paths (even a simpler solver
is experimentally shown to be effective at this task [13]).
While standard theorem provers and linear constraint solvers
provide power, they are often both overly general (which
costs), and yet insufficiently tuned to provide enough di-
agnostic information for common accesses (which results in
false positives/negatives). A good example of the cost of
power is the standard relation analysis package used in Dor
et. al. [6]. While it effectively finds buffer access errors, it
requires extensive user annotation, minutes of CPU time,
and hundreds of megabytes of memory to process code frag-
ments of no more than a hundred lines of code. We resort
to a different strategy. The end result is that each query
and update in our solver takes constant time. Although it
is not as powerful, it tracks the most common relationships
needed to find large numbers of real errors in large unanno-
tated code bases.

Operationally, the traversal module uses the solver to keep
track of assumptions and check safety properties in the form
of assertions. Assumptions reflect information about pro-
gram values collected by the traversal module along the cur-
rent execution path (e.g. side-effects of assignments, value
constraints imposed by if statements, etc). Assertions are
conditions that must be satisfied in order for the program to
be safe (e.g. the array index must be less than the number
of elements in the array).

The solver collects available information in the solver state.
Figure 4 gives a simplistic view of the representation of the
state. Internally, the solver tracks three classes of objects in
the source program: scalars, pointers, and arrays. The map-
ping from program variables to these objects is maintained
in the simple VariableBindings table shown in Figure 4. Be-

low, we describe the details of how the solver tracks each of
these three object types.

6.2 Scalar objects
A scalar object (i.e. variables and structure fields of type

int, short, or the length of a buffer, etc) in the source pro-
gram is represented either as a constant, or a linear deviation
from a symbol in the solver. We define the linear derivation
from a symbol α as any (a · α + b)/c, where a, b, and c are
integer constants. The solver uses symbols when a variable’s
exact value is unknown. For example, on entering a func-
tion, the parameters are bound to fresh symbols to track the
propagation of their values.

Scalar assumptions are passed to the solver in one of the
following two forms: Sym op C or Sym op Sym where Sym
is a linear derivation, C is a constant, and the operator op
is one of =, >,≥, <,≤, 6=. The traversal module converts
assumptions in the source program (e.g. x < 5) into one of
these two forms using the VariableBindings mapping in the
solver state. Although the solver is limited to handling as-
sumptions relating at most two symbols, many variables are
linearly related and can be reduced to the same symbol, and
then to one of the two forms above. The core solver state
is made of seven (initially empty) tables. The first, Vari-
ableBindings, maps program variable names to solver sym-
bols. The other six tables, described below, record con-
straints on these symbols.

Constant bounds — the solver uses the ConstantUpper-
Bound and ConstantLowerBound tables to record constant
upper and lower bounds for symbols. For example, if vari-
able x is represented by symbol α, in the true branch of
“if (x >= 0),” we will add the mapping α 7→ 0 to Con-
stantLowerBound. From then on, the solver can derive that
α ≥ n for all n ≤ 0. As the solver collects more information
it refines these bounds. If both bounds meet at a constant
c, it derives that the symbol’s value is c and replaces each
occurrence of that symbol in the solver state by c.

Constant disequalities — disequalities are common con-
straints found in C programs (e.g. if (x ! = NULL) {. . .}).
The solver tracks all the constants a symbol is not equal to
using the ConstantNotEq table (e.g. α /∈ {5, 6}). It some-
times combines this information with constant bound infor-
mation to get more precise estimates of a symbol’s value.
For example, if the solver determines α <= 5, and sub-
sequently that α 6= 5, it infers that α <= 4 and updates
ConstantUpperBound accordingly.

Symbolic equalities — equalities between program vari-
ables are handled by unifying (replacing) the symbols to
which the variables are bound. During unification, the solver
first expresses the “younger” symbol (determined by the or-
der symbols are introduced) in terms of a linear deviation
from the older one, and then uses that to replace each occur-
rence of the former in the solver state. For example, suppose
x is bound to α, y to β, and z to 3 ∗ β, if we subsequently
observed that x = 3y, the solver will replace β by α/3. The
updated state will contain x = α, y = α/3, and z = α. After
unification, constraints on β will be transformed and added
as those for α.

“Age discrimination” during unification is not an arbi-
trary decision. It simplifies propagation of values passed
in from function parameters, which are used to generate
triggers for interprocedural analysis. As mentioned above,
parameters are bound to fresh symbols on entry, and the se-



niority rule ensures that they will not be replaced by younger
symbols by unification. Therefore, to tell if a program value
is derived from a parameter, we simply remember the set of
symbols that are initially bound to function arguments.

Symbolic bounds — the solver also tracks a list of sym-
bolic upper and lower bounds for each symbol. Since the
upper bound of one symbol can be expressed as a lower
bound of another, the solver maintains the bound informa-
tion only for one of the two symbols involved. Again, we
use the seniority rule to determine where this information is
kept.

Symbolic disequalities — treatment of disequalities be-
tween symbols is similar to that of constant ones. Again, the
seniority rule applies in this case.

6.3 Arrays and Pointers
The solver abstracts arrays and pointers as pairs of scalar

objects. For arrays, it records the size of its base type in
bytes and the number of elements in the array. For ex-
ample, a 32-bit integer array buf with 30 elements will be
represented as the pair (4, 30). To check if the array access
buf[i] is illegal, the traversal module will check

{

i >= 0
i < length(buf),

For pointers, the solver records the size of the pointed-to
object in bytes and the offset of the pointer relative to the
start of the object. For example, on a 32-bit machine, after

int *buf = (int*)malloc(len);
int *ptr = buf+1;

buf will be represented as (len, 0), and ptr will be (len, 4). To
check the validity of ∗ptr, we test

{

offset(ptr) >= 0
offset(ptr) + sizeof(∗ptr) <= length(ptr)

which in this case translates to len >= 8. Notice we recog-
nize “malloc” as an allocation function that returns a buffer
of length equal to its first argument. We hardcode a small
number of such functions in the checker, and use “size infer-
ence” (described in § 7) to derive the rest.

In addition to propagating lengths via assignments (as
done above for buf to ptr) the solver also propagates buffer
properties across pointer arithmetic operations. For exam-
ple, if we see the statement “x = p2 − p1;”, we know that
the C language requires that p2 and p1 point to the same
buffer and thus share the same length. Therefore, we unify
the lengths of the pair after this program point.

Casting of arrays into pointers is implicit in C, but we need
to do an explicit conversion in our representation. To cast a
(size, domain) pair into a (length, offset) representation, we
simply multiply the domain by the size of the base type of
the array to form the length, and use 0 as the offset.

In future work we will add two more properties to the
representation of buffers: (1) whether pointers are null and
(2) lengths for null-terminated strings. Initial experiments
show promise in this approach.

7. SIZE INFERENCE
The more allocation and memory touching functions ARCHER

knows of, the more effective it will be. A missing allocator
means it will not track returned pointers; a missing memory
function means it cannot flag parameter overflows. While

Name Ptr Sz S/N Z

kmalloc Ret 0 1147/1176 15.0
copy to user 1 2 726/753 11.3
copy from user 0 2 742/772 11.2
copy from user 1 2 251/264 6.1
copy to user 0 2 238/255 5.3
snd kcalloc Ret 0 60/60 3.9
ckmalloc Ret 0 6/6 1.2
pnp alloc Ret 0 5/5 1.1
stli memalloc Ret 0 2/2 0.7

slice dma loaf Ret 1 22/22 2.3
stli cmdwait 3 4 15/15 1.9
skb put Ret 1 80/91 1.9
BusLogic Command 4 5 14/14 1.9
i2ob query device 3 4 10/10 1.6
SuperTraceWriteVar 3 5 8/8 1.4
fill note 4 3 8/8 1.4
sock kfree s 1 2 7/7 1.3

Table 1: A partial listing of inferred allocation and mem-
ory touching functions. Ptr and Sz specify the parameter
number of the pointer and its associated size respectively
(“Ret” means the pointer is returned by the function). S/N
is the ratio of successes to attempts and Z is the value of the
computed test statistic. As an example, kmalloc returns a
pointer whose size is specified by its 0th argument. It had
1147 successful pairings giving a z-rank of 15. The table is
split into two populations: those with suggestive names (top
half) and “everything else.” (bottom half)

ARCHER uses an interprocedural analysis to propagate in-
formation across procedure boundaries, it requires knowing
a set of “root” allocation and memory functions such as
“malloc,” “memset,” etc. While functions such as these
are well-known, many others are domain- or even system-
specific. And it is easy to miss even standard functions (did
you forget “wcsnlen”?).

We must specify these root functions because, while tradi-
tional analysis can compute a transitive set of functions that
call these roots directly or through other functions, it is too
weak to infer the root set itself. A common practical reason
for this is that it requires source for the functions it analyzes,
which is often not available because: the code is in a third-
party library, is a system call (such as read or write), or
is written in assembly code (as many speed-critical memory
touching functions are). Second, and more fundamentally,
while many functions abstractly require correct sizes, it may
be almost impossible to glean this from analysis of their im-
plementation code. Consider the following function which
initializes a structure:

void foo init(struct foo *f, void *buf, unsigned buf size) {
f−>buf = buf; f−>buf size = buf size;

}

Intuition tells us it is a good bet that buf size is the size
of buf. Unfortunately, classic analysis cannot do similar in-
ference. As a result, it will miss errors where an incorrect
value is passed to foo init. While this is a contrived ex-
ample, more realistic ones abound — for example, from the
compiler’s point of view, a malloc implementation will look
like some sort of complex linked-list manipulation routine
and it is very unlikely that it can determine that the sole
argument specifies the size of a requested memory block.



This section shows how to automatically infer which pa-
rameters specify sizes by turning the problem on its head.
Rather than analyzing a routine’s implementation to deter-
mine how it acts we instead analyze the routine’s calling

contexts to do so. The approach uses statistical belief anal-

ysis [8] to behaviorally infer how likely it is that a program-
mer believes a given parameter is a size parameter from code
examples.

We divide functions into two populations. First, alloca-
tion functions that return a pointer of a requested size (such
as malloc). Given such a function foo that takes an argu-
ment n and returns a pointer p we want to answer the ques-
tion “is n the size of p?” Second, memory functions that take
a pointer and a size parameter less than or equal to the size
of the pointed to object (such as memcpy or foo init from
above). Given such a function bar that takes a pointer p

and integer n as arguments we want to answer the question:
“is n less than or equal to the size of p?”

The basic approach to answering either question is simple:
for a function foo we count how often the correct value size
is passed as the ith parameter n (a “success”) versus how
often an incorrect value is passed (a “failure”). Function
parameters almost always passed the correct size are likely
size parameters; those erratically correct are less likely. We
use the z-test statistic [12] to order function-parameter pairs
from most to least likely based on the frequency counts of
successes and failures. Intuitively, this test statistic weighs
both the accuracy of the observed data (the number of suc-
cesses divided by attempts) as well as the population size
(the total number of attempts). The larger the sample, the
more confidence we have that the observed ratio of successes
to attempts was not coincidental. A degenerate case is that
one success and zero failures is 100% accurate, but gives us
much less confidence than 9 successes and 1 failure (90%
accuracy).

For example, assume that we see the following calls:
int *p, *q, *r;
struct foo { int *p, *q; } w;

p = kmalloc(sizeof(int), 0);
q = kmalloc(sizeof(int), 0);
w = kmalloc(sizeof(struct foo *), 0);
w−>p = p; w−>q = q;
r = kmalloc(x, 0);
memset(p, 0, sizeof(int));

The first two calls to kmalloc pass the correct size, the third
an incorrect size (the size of the pointer rather than the
pointed to object) and the fourth we do not know and ig-
nore. In all four calls the second parameter is incorrect. The
final call, to memset, passes the incorrect size as the second
argument and the correct one as the third. Thus, we would
rank the tuple (kmalloc, ret, 0) first, the tuple (memset,
0, 2) second, and finally the tuples (memset, 0, 1) and
(kmalloc, ret, 1) last (if at all).

Making this scheme work in practice requires a few tweaks.
First, allocation functions can return arrays of the given type
rather than just a single instance. Thus, any non-zero size
that is a multiple of the underlying object is counted as
a success. We similarly count parameters for memory func-
tions as successes if they are less than or equal to the needed
value (e.g., memory copy functions need not copy the entire
contents of buffers).

Second, coincidental constants can cause a problem. For
example, if we pass in a constant 32 to a routine that often

System File FN LOC Bug FP

Sendmail8.12.7 134 829 97K 2 4
PostgreSQL7.3.1 404 5.7K 296K 9 0
OpenBSD3.2 850 10.7K 628K 31 12
Linux2.5.53 2,158 36.5K 1.6M 118 39
local 87 33
interprocedural 31 6
security 21 0

Total 1388 53.7K 2.6M 160 55

Table 2: Experimental results: Bugs is the total number of
bugs found; FP the number of false positives. File is the
number of files checked; FN the number of functions; LOC
the number of lines of code.

Sendmail PostgreSQL OpenBSD Linux

5m23s 18m3s 1hr26m5s 4hr10m4s

Table 3: CPU time consumed in analyzing each of the four
code bases. Format is in hours, minutes, and seconds. The
longest run was Linux, at four hours, ten minutes and four
seconds.

allocates objects of two, four and eight bytes we will falsely
think that this flag variable could be their size (since it is
larger than them and they evenly divide into it). We refine
the behavioral signature we are looking for by noticing that
in practice such functions take a range of sizes and thus that
a true size parameter will also take on a range of values. We
filter out any routines that take on less than 5% new values
(this handles a small number of integer typed flags that often
have power-of-two values).

Finally, we use the idea of latent specifications [8] to split
the results in two populations. The first population are
routines that contain names that are common substrings of
memory functions: alloc, copy, cpy, etc. These tend to be
easier to reason about in general and we also tend to need
fewer samples to have reasonable confidence. The second is
everything else.

Without the three additional additional techniques de-
scribed above, the statistical inference proved hopelessly
noisy. With the three techniques above, it became happily
effective. We found over 70 valid functions in Linux (a good
improvement to our manual specification of four root func-
tions) with 16 false positives. Table 1 gives a representative
set.

8. RESULTS
We applied ARCHER to the most recent releases of four

large open-source software projects that were then avail-
able: Sendmail 8.12.7, PostgreSQL 7.3.1, OpenBSD 3.2,
and Linux 2.5.53 (ordered by their respective size), all of
which have undergone years of development and they are
well-known, high quality systems that are widely deployed
for production use. We believe they represent a good mix
of security sensitive system software being used today.

We summarize the analysis results in Table 2. The secu-
rity errors in Linux are found by intersecting buffer access
errors with results from a modified tainting analysis [1]: we
flag values that could come from a malicious user and any
error involving those values could be a potential security
hole.



We ran our tests on a single processor Xeon 2.8G system
with 512M of memory. The running time of the analysis (ex-
cluding parsing) is given in Table 3. On average, ARCHER
can analyze 121.4 lines of code per second, making it suit-
able to be used in a nightly build process for systems of
significant size.

Our results are encouraging. ARCHER issued a total of
215 warnings. We manually inspected each of them and
identified 160 potential errors. We have filed bug reports
with their respective developers, and most of the errors have
been confirmed and patched in subsequent releases. The 55
false positives were largely due to errors in our solver, which
is in an early development stage. We are eliminating imple-
mentation errors daily and we expect a lower false positive
count in the future.

9. CONCLUSION
This paper has described ARCHER, an automatic tool

that uses powerful, simulation-based analysis to find mem-
ory access errors. ARCHER works well in practice. It needs
no annotations, scales to millions of lines of code, and has
found errors in every system we have checked (including hun-
dreds of errors in Linux). It uses a novel, effective statistical
approach to infer functions that it should check, guarding
against programmer omissions.
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