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Head Yaw Estimation From Asymmetry
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Abstract—This paper proposes a novel method to estimate the
head yaw rotations based on the asymmetry of 2-D facial appear-
ance. In traditional appearance-based pose estimation methods,
features are typically extracted holistically by subspace analysis
such as principal component analysis, linear discriminant analysis
(LDA), etc., which are not designed to directly model the pose
variations. In this paper, we argue and reveal that the asymme-
try in the intensities of each row of the face image is closely
relevant to the yaw rotation of the head and, at the same time,
evidently insensitive to the identity of the input face. Specifically,
to extract the asymmetry information, 1-D Gabor filters and
Fourier transform are exploited. LDA is further applied to the
asymmetry features to enhance the discrimination ability. By using
the simple nearest centroid classifier, experimental results on two
multipose databases show that the proposed features outperform
other features. In particular, the generalization of the proposed
asymmetry features is verified by the impressive performance
when the training and the testing data sets are heterogeneous.

Index Terms—Fourier transform, Gabor filters, head yaw esti-
mation, linear discriminant analysis (LDA), nearest centroid (NC)
classifier.

I. INTRODUCTION

TATISTICS indicate that approximately 75% of the faces
S in photographs are nonfrontal [1]. However, the best known
face perception systems can only deal with near-frontal faces
reliably, and the performances of these systems degrade dra-
matically on nonfrontal faces. Therefore, pose-invariant face
perception has been an active research topic for several years.
To achieve the expected robustness to pose variation, one may
expect to process face images differently according to their pose
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parameters. In this case, the pose of the input faces must be
estimated as a prerequisite for sequent processes.

Pose estimation essentially means the computation of three
types of rotation of a head: yaw (looking left or right), pitch
(looking up or down), and roll (tilting left or right). Among
them, the roll rotation can be computed easily by the relative
position of the feature points, but the other two rotations
are rather difficult to estimate. Because the estimation of the
yaw rotation has many important applications, it attracts more
attention than pitch estimation [10]. Therefore, most previous
works mainly focus on the estimation of the yaw (sometimes
also pitch) rotation. These methods can be categorized into two
main groups [5]: model-based methods [2]-[9] and appearance-
based methods [10]-[15].

The model-based methods make use of the 3-D structure
of human head. Typically, they build 3-D models for human
faces and attempt to match the facial features such as the face
contour and the facial components of the 3-D face model with
their 2-D projections. Nikolaidis and Pitas [4] propose a head
pose estimation method from the distortion of the isosceles
triangle formed by the two eyes and the mouth. Ji and Hu [5]
propose that the shape of a 3-D face can be approximated
by an ellipse and that the head pose is computed from the
detected ellipse of the face. Similarly, Xiao et al. [9] utilize
the cylindrical head model and present a robust method to
recover the full motion of the head under perspective projection.
Since these methods generally run very fast, they can be used
in video tracking and multicamera surveillance. However, they
also share some common disadvantages. First, they are sensitive
to the misalignment of the facial feature points, while the
accurate and robust localization of facial landmarks remains
an open problem. Second, it is difficult to precisely build the
head model for different person. Third, these methods generally
require high resolution and image quality, which cannot be
satisfied in many applications such as video surveillance.

Compared with the model-based methods, the appearance-
based methods typically assume that there exists a certain rela-
tionship between the 3-D face pose and some properties of the
2-D facial image, and they use a large number of training im-
ages to infer the relationship by using statistical learning tech-
niques. Darrell ez al. [11] propose the use of eigenspace for head
pose estimation. A separate eigenspace is computed for each
face under each possible pose. The pose is determined by pro-
jecting the input image onto each eigenspace and selecting the
one with the lowest residual error. In some sense, the method
can be formulated as a maximum a posteriori estimation prob-
lem. Gong et al. [12], [23] study the trajectories of multiview
faces in linear principal component analysis (PCA) feature
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space and use kernel support vector machines (SVM) for pose
estimation. Li ef al. [24] exploit independent component analy-
sis (ICA) and its variants, independent subspace analysis and
topographic ICA for pose estimation. ICA takes into account
higher order statistics required to characterize the view of ob-
jects and suitable for the learning of view subspaces. Chen et al.
[10] propose the kernel-based method to deal with the nonlin-
earity of head pose estimation. They choose the face images of
two specific head pose angles and utilize classification-based
nonlinear interpolation to estimate the head poses between the
two angles. Wei et al. [15] propose that the optimal orientation
of the Gabor filters can be selected for each pose to enhance
pose information and eliminate other distractive information
like variable facial appearance or changing environmental
illumination. In their method, a distribution-based pose model
is used to model each pose cluster in Gabor eigenspace. Since
the set of all facial images with various poses is intrinsically a
3-D manifold in image space, manifold learning [16]-[18] for
head pose estimation is getting popular recently [19]-[22]. For
instance, in [19], by thinking globally and fitting locally, Fu and
Huang propose the use of the graph embedded analysis method
for head pose estimation. They first construct the neighborhood
weighted graph in the sense of supervised locally linear em-
bedding [16]. The unified projection is calculated in a closed-
form solution based on the graph embedding linearization and
then projects new data into the embedded low-dimensional
subspace with the identical projection. The head pose is finally
estimated by the K -nearest neighbor classification. Intuitively,
these appearance-based methods can naturally avoid the afore-
mentioned drawbacks of the model-based methods. Therefore,
they have attracted more and more attention.

However, the features used by all these methods are extracted
from the entire face, which is generally vectorized as 1-D vector
which lose the face structure in some sense; therefore, these
features contain not only pose information but also informa-
tion about identity, lighting, expression, etc. Understandably,
given a representation of the same dimension, its discriminative
ability will be inevitably lower if more nonpose information is
preserved. In the extreme case, when the nonpose information
surpasses the pose information, the performance of pose esti-
mation will be much worse.

The key of pose estimation is to seek suitable features
closely relevant to pose variations and reliably insensitive to
facial variations irrelevant to pose, such as identity, lighting,
expression, and the possible bias of the training set. Keeping
this in mind, in this paper, we investigate the asymmetry of the
facial appearance and reveal its capacity as an excellent pose-
oriented face representation. Intuitively, the proposed method is
based on a commonly accepted assumption that human head is
bilaterally symmetrical. As an important geometric attribute of
heads, the symmetry has been used to estimate the head pose in
the model-based methods [25], [26]. Recently, the asymmetry
of facial appearance has also been used in face recognition [27],
[28] and expression recognition [29]. However, the question
of how to use the asymmetry in the appearance-based pose
estimation remains unanswered. With this in mind, in this
paper, we propose a novel method using the asymmetry to
estimate the head yaw. We show that the asymmetry is indeed
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Fig. 1. Relationship between the symmetry plane of the head and the center

lines of the images. The solid line is the center line of the image, and the dash
line is the symmetry line.

closely related to the pose variations and, at the same time,
independent of other facial variations, particularly the identity.

Specifically, in our study, Fourier analysis is used to represent
the asymmetry, i.e., to represent the pose. By taking the inten-
sities of each row of the face image as a 1-D signal, Fourier
transform of these signals is taken as the feature extractor to
extract the asymmetry features of the head. However, the signal
analysis directly in the pixel domain generally suffers from
noise. Moreover, local feature analysis can represent object
more robust and effectively [31]. Therefore, in our method,
1-D Gabor filters are first convolved with the row signals to
reduce noise and extract the local information before using the
Fourier analysis. Unlike 2-D Gabor filters normally used in face
recognition, 1-D Gabor filters are used to keep the asymmetry
of facial appearance and reduce the computational complexity.
Furthermore, linear discriminant analysis (LDA) [32] is applied
after feature extraction to enhance the discriminative power and
reduce the dimension. For classification, the nearest centroid
(NC) classifier is exploited to validate the effectiveness of the
proposed method.

The remaining part of this paper is organized as follows.
In Section II, we show that the asymmetry does exist in the
facial appearance from the real data. In Section III, we describe
the proposed method in detail and analyze its characteristics.
Section IV presents the method combining LDA with the
asymmetry features. Experiments are given in Section V. Con-
clusion is drawn in Section VI with some discussions on the
future work.

II. ASYMMETRY PROPERTIES

This section presents in detail the relationship between the
asymmetry of the face image and yaw variations, as well as
some analysis of the asymmetry of Fourier transform.

A. Asymmetry Analysis From Facial Appearance

To show the asymmetry of the face images, we illustrate
the relationship between the center line of the images and the
symmetry plane of heads in Fig. 1. In Fig. 1, the solid line
is the center line of the 2-D images, and the dash line is the
sagittal line, which we call symmetry line. The symmetry line
is the intersection of the sagittal plane of head and the plane,
which parallels to the image plane and passes the noise tip.
Since the locations of the two eyes are scaled to a constant
in the image when we crop the face, the center vertical line
of the image is the center vertical line of two eyes in the 2-D
image. From Fig. 1, we can find the close relationship of the
two lines with pose variations. In the front-view image, the
two lines are overlapping. With the pose varying from the front
to the half-profile, the deviation between the two lines increases
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gradually. The deviation, which is related to pose variations
and the asymmetry of the images at the same time, is caused
by the projection from three to two dimensions. Therefore, the
symmetry of the 3-D face also exists in the 2-D intensity image
in some sense. From the viewpoint of the signal processing, if
one takes intensities in the row of the image as the signal, it
is approximately symmetric in the front view, but asymmetric
when pose varies to the half-profile. To sum up, we can con-
clude that the asymmetry previously defined is closely related
to the pose variations.

B. Asymmetry Properties of Fourier Transform

Asymmetry properties of Fourier transform are very useful in
many areas. We briefly review the Fourier transform in order to
analyze its asymmetry. Formally, the discrete Fourier transform
of a real vector y with n elements is a complex vector Y with
n elements

n—1 B
Y=Y ety mapbixby,  k=0,1,...,n—1 (1)
=0

where ¢ is the imaginary unit. According to Oppenheim and
Schafer [33], any sequences can be expressed as a sum of an
even part (the symmetry part) and an odd part (the asymmetry
part). When Fourier transform is performed on the real se-
quence, the even part transforms to the real part, and the odd
part transforms to the imaginary part. Clearly, the asymmetry
measure of the real sequence in the frequency domain should
be a function of the imaginary part. A simple measure can be
defined as the energy e; of the imaginary part of the entire
sequence, denoted by e, = (Y70 b2)/? [28]. The lower the
value of ey, the less the amount of asymmetry (and, hence, more
symmetry) and vice versa. On the contrary, e, = (370 a3)'/?
can be used as the measure of the symmetry. To show the
aforementioned property of Fourier transform, we compute
e, and e, of the function sin(t) and cos(t) with ¢ € [—m, 7] as
examples. As for the even function cos(t), when the sampling
interval A = 27/629, e, = 1.5, much less than e, = 444.5.
On the contrary, for the odd function sin(t), e, = 445.0, much
larger than e, = 1.5. These two examples clearly illustrate that
the aforementioned representation of the frequency domain is
effective to measure the asymmetry.

C. Asymmetry Measure of Head Images

As discussed in Section II-A, the symmetry of facial images
decreases with the increase of pose deviation from frontal view.
Obviously, this observation holds for the intensity sequence of
each row in the face images. Thus, it is a natural extension to
define the asymmetry measure of a face image as the average of
the asymmetry of all the rows. Formally, the symmetry measure
of a face image is defined as follows:

E, =
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h
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Fig. 2. Symmetry measures of the different poses on the CAS-PEAL data-
base. The horizontal axes represent the poses, and the vertical axes represent
the measures.

where e, is the symmetry measure of the intensity sequence of
the jth row and h is the number of rows of the image. Similarly,
the asymmetry measure Fj, can be defined as follows:

h
1
E, = - ; ebj- (3)

To validate the effectiveness of I, and L}, experiments are
conducted on the pose subset of the CAS-PEAL face database.
The means and the standard deviations of the measure FE,
and Ej of each pose are shown in Fig. 2. The horizontal
axis represents the poses, whereas the vertical axis shows the
measure. Since E, and Ej, reflect the two sides of the symmetry,
in Fig. 2, we also show the mean and the standard deviation
of a unified measure D, which is defined by combining the
symmetry and asymmetry as follows:

h
1 €aj
e e 4
h,i €qj 1 €bj @)
j=1

Obviously, the lower the value of D, the greater the amount of
asymmetry and vice versa. From Fig. 2, one can clearly see that
the symmetry decreases and the asymmetry increases when the
poses vary from the front to the half-profile. However, it should
be noted that although the asymmetry exists in images and is
related to the pose variations, we still cannot use directly the
asymmetry measure to estimate the head pose. There are two
reasons: 1) It is difficult to distinguish the right and the left
poses only from the measure, and 2) the standard deviations are
too large to estimate yaw accurately.

Fortunately, another significant hint obtained from the
aforementioned analysis is that the spatial asymmetry part
of the face corresponds to the imaginary part of the Fourier
transform and that the symmetry part corresponds to the real
part. It is just this observation that inspires us to propose the
idea of extracting asymmetry features in the frequency domain.
Specifically, in our method, we use the real and the imaginary
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parts together as a whole feature to estimate the poses, and
hereinafter, they are called the asymmetry features. These
features are expected to contain sufficient information that can
distinguish various poses. Furthermore, they can be used in the
Gabor-Fourier (GaFour) method, which is introduced in detail
in the next section.

III. GAFOUR METHOD

This section presents in detail the GaFour feature and its
good property to represent pose.

A. One-Dimensional Gabor Filters

Although the real and imaginary parts of Fourier transform
can reflect the asymmetric information of the face images
with pose variations, it is still difficult to use them in yaw
estimation directly. Since the intensity feature can be affected
by many factors, such as lighting variations and noise, the
asymmetry cannot be accurately extracted from the intensity
feature directly. At the same time, due to the holistic property
of Fourier transform, face representation in frequency domains
loses the spatial position information in the sequence, and the
noise of one pixel can influence the full frequency domain.

Considering the limitation of Fourier transform, 1-D Gabor
filters are used before extracting the asymmetry from the raw
image, and the GaFour method, which is the combination
of Gabor filters and Fourier transform, is proposed for yaw
estimation. Since Gabor filters can retain the asymmetry of
image and spatial information, they can weaken the drawback
of Fourier transform and make the asymmetry features more
accurate and relevant to the pose.

Gabor filters are chosen for their biological relevance and
technical properties. The multiscale Gabor filters have similar
shapes as the receptive fields of simple cells in the primary
visual cortex [34]. One-dimensional Gabor filters can be
defined as

1 —r2 .
eﬁezﬁﬂur) (5)

9u (T) = \/%O_

where p is the modulation frequency and o is the scale
parameter which determines the width of the Gaussian
envelope. The Gabor representation of a signal is the
convolution of the signal with a family of Gabor filters. The
convolution result O, (r) corresponding to the Gabor filter at
frequency p can be defined as follows:

Ou(r) = s(r) * gu(r) (6)

where * denotes the convolution operator and s(r) is the gray
row signal of an image. Fig. 3 shows the Gabor kernels with
four frequencies. In Fig. 4, we show the Gabor representations
of some images.

B. GaFour Method

Based on the aforementioned analysis, we propose the
GaFour method to extract the features to estimate the head
pose. The flow chart of the proposed method is shown in Fig. 5.
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Fig. 3. Gabor kernels with four frequencies.

Fig. 5.

Flow chart of the GaFour method.

The main procedure of the GaFour method is described briefly
as follows: 1) Each row slice of the image is treated as one
signal vector; thus, the image is taken as the combination of
many signals. 2) For each row signal, 1-D Gabor filters with
various frequencies are operated. In our case, five frequencies
are exploited; thus, five magnitude signals (vectors) are gener-
ated for each row of the input image. 3) For each magnitude
signal, Fourier transform is conducted, and all the vectors of
the real and imaginary parts are combined together as the final
asymmetry features. The asymmetry features in GaFour also
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Fig. 6. Symmetry measures D of the different poses. The features are ex-
tracted by the GaFour method with four different frequencies.

include the part of the symmetry because the symmetry can be
seen as the complement of the asymmetry.

C. Advantages of Using One-Dimensional Gabor Filters

Compared with Fourier transform, 1-D Gabor filters with
Gaussian envelope work on the signal in a local window. The
influence of the noise of one pixel is limited in the local win-
dow (rather than the full frequency domain as for the Fourier
transform) and decreases with the increase of the distance
between the center of the window and the noise pixel. Hence,
it can achieve the optimal localization in both the spatial and
frequency domains.

Compared with 1-D Gabor filters, 2-D Gabor filters have
been used in face recognition and other related problems.
However, there are three reasons for us to select 1-D Gabor
filters, but not 2-D Gabor filters, as our feature extractors in
the proposed method: 1) the asymmetry exists in the intensities
of each row of the images, which can be regarded as 1-D
vector; therefore, it is natural to use 1-D Gabor filters; 2) the
computational cost and the dimension of the resulting features
of 1-D Gabor filters are greatly lower than those of 2-D Gabor
filters; and 3) the fast speed makes 1-D Gabor filters possible
for a real-time pose estimation system.

D. Asymmetry Analysis of GaFour

One of the key points of the GaFour method is that the asym-
metry of the face images should be kept after 1-D Gabor filters.
To show that the asymmetry of the images still exists after the
feature extraction by the GaFour method, we do statistics of the
measure D in (4) on the same subset of CAS-PEAL database
as in Fig. 2. The results are shown in Fig. 6, which illustrates
the asymmetry measure D for four 1-D Gabor filters. From
Fig. 6, we can see that the symmetry based on the GaFour
feature decreases gradually as before when the pose varies from
the front to the half-profile for all the four Gabor filters. This
implies that the extracted GaFour feature can well preserve the
asymmetry information of the face images. On the other hand,
the Gabor transformation is a window-Fourier transformation.
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Therefore, when the window is relatively smaller than the scale
of the object, the symmetry will still be kept.

IV. GAFOUR FISHER FEATURE FOR YAW ESTIMATION

In this section, we present our final feature extraction method
and introduce its combination with the NC classifier for yaw
estimation.

A. GaFour Fisher Feature

In face recognition, Gabor Fisher Classifier (GFC) [35]
method has achieved very good performances on a lot of
databases. The GFC method, which is robust to illumination
and facial expression variability, applies LDA to the Gabor
feature vector derived from the Gabor wavelet representation
of face images. To encompass all the features produced by the
different Gabor kernels, one concatenates the resulting Gabor
wavelet features to derive an augmented Gabor feature vector.
The dimensionality of the Gabor vector space is then reduced
under the eigenvalue selectivity constraint of LDA to derive
a low-dimensional feature representation while enhancing the
discriminant ability.

Inspired by GFC, we propose the GaFour Fisher feature
(GF3) method. In the extraction of GF>, the GaFour features
are first computed from the input head image, and then, LDA
is applied to the GaFour features to improve the discriminative
ability. LDA has been recognized as one of the most successful
methods in face recognition [36]. In LDA, for a c-class problem,
the within-class scatter matrices S, and the between-class
scatter matrices S}, are computed as follows:

1 C
swzﬁz > (x—my)(x —m;)" (7)

1=1x€D;
1 « T
Sy, = p l:zlnl(ml —m)(m; —m) 8)

where m;, n;, and D; are the mean vector, the total number
of samples, and the sample set of the class 7, respectively, m
is the overall mean vector, and N is the total number of all
the samples. S,, represents the average scatter of the sample
vectors x of different classes around their respective means
m;. Similarly, S}, represents the scatter of the conditional mean
vectors m; around the overall mean vector m. Through a linear
transformation, the original feature representation is projected
into a new LDA subspace where Sy, is maximized while S,
is minimized by maximizing the Fisher separation criterion
J(W) = (|WTS,W||/||[WTS, W]|). The optimal projection
matrix W can be obtained by solving a generalized eigenvalue
problem: S, W = AS,,W.

B. Dimension Analysis of GF3

The feature dimension is very important in computation.
A lower dimension not only can improve the computational
speed but also can avoid the small sample size (3S) prob-
lem. Therefore, it is necessary for us to address the issue of
GF? dimension.
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From the flow chart of GaFour in Fig. 5, one can know
that the dimension of the GaFour features is 2 X s X w X h,
where s is the number of 1-D Gabor filters, and w and h are
the width and the height of the image, respectively. Although
the dimension of the original GaFour features is as high as
10240(=2 x 5 x 32 x 32) in our case, it can be reduced
greatly benefiting from the properties of Fourier transform.

Since the real part is the even-symmetric sequence and the
imaginary part is the odd-symmetric sequence, the complex
vector Y with n elements in Section II-B can be represented
by ar(k=0,...,n/2) and bp(k=1,...,n/2—1) (bp and
b, /2 are discarded for zeros). Thus, for the 32 x 32 image,
the dimension after Fourier transform is 1024(= (32 x 17) +
(32 x 15)), which is the same as the original dimension of the
image. Clearly, the dimension of the GaFour features can be re-
duced from 10240 to 5120(= 5 x 1024) while no information
is lost.

For the complex vector Y after Fourier transform, the low
frequencies contain general and gross information of the signal,
whereas the high frequencies are mostly from the details of the
signal and noise. For face images, the details are mainly related
to the identity of the face rather than the pose. Therefore, the
high frequencies can be safely cut off. In this paper, 97% of the
total energy (keeping about nine lowest frequencies) is kept,
and the final dimension of the GaFour features can be reduced
from 10240 to about 2880(= 2 x 5 X 9 x 32).

Compared with the dimension of the GaFour features, the
dimension of GF? is much lower, since LDA can commonly
reduce the dimension to ¢ — 1. For yaw estimation, c is gener-
ally very low. For instance, even if 1° yaw interval is taken as
one class, there are only 181 classes from the right to the left
profile. Therefore, the final dimension of GF? is not more than
180, which is much less than 2880, the dimension of the GaFour
features.

C. GF? for Yaw Estimation

Since the extraction of GF® can be regarded as the pre-
processing step for yaw estimation, it should be combined with
some classifier to get the yaw of the input image. In this paper,
we take the yaw estimation as a yaw classification problem,
which is a possible way when the poses in the database are not
continuous. In this paper, mainly NC classifier is used as the
classifier to evaluate the performance of the proposed features
for its simplicity. In fact, the NC classifier can be replaced by
other methods, such as SVM [30], support vector regression, or
relevance vector machine [39].

V. EXPERIMENTS

In this section, the proposed GaFour and GF® are evaluated
on two face database by comparing with other feature extraction
methods.

We compare the performance of GaFour with the follow-
ing unsupervised methods: PCA, ICA, and 2-D Gabor filters
(Gabor). As one of the baseline methods in face recognition,
PCA [37] is also the baseline method in appearance-based
pose estimation. Since ICA has achieved better performances
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in pose estimation recently [24], we also show its performance
by using the code of ICAFaces [38]. For the two architectures to
perform ICA on images in ICAFaces, we use ICA1 and ICA2 to
represent them, respectively. Since 1-D Gabor filters are applied
in GaFour and GF3, 2-D Gabor filters with five scales and
eight orientations are also selected as the comparison method.
For all the methods, PCA is used after feature extraction to
reduce the dimension of features, and 95% of the total energy
of eigenvalues is kept.

We compare the performance of GF* with the following
supervised methods: LDA and GFC. The LDA-based baseline
algorithm, similar to the Fisherfaces method [36], applies first
the PCA for dimensionality reduction and then the LDA for
discriminant analysis.

For all the images, the face detection method [41] is applied
to locate the face region from the input images, and then, all
the face regions are normalized to the same size of 32 x 32.
Finally, histogram equalization is used to reduce the influence
of lighting variations.

A. Experiment 1: On Homogeneous Training and Testing Sets

By the term “homogeneous,” we mean that the training
and testing sets are sampled from the same database, i.e.,
the imaging conditions are similar for the training and testing
sets. In all the experiments, threefold cross-validation is used
to avoid overtraining. Specifically, we rank all the images by
subjects and divide them into three subsets. Two subsets are
taken as the training set, and the other subset is taken as the
testing set. In this way, the persons for training and testing are
totally different, thus avoiding the overfitting in identity. Testing
is repeated three times, by taking each subset as the testing set.
The reported results are the average of all the tests.

1) Experiments on the CAS-PEAL Database: First, we eval-
uate the performances of different methods on the public
CAS-PEAL database [40], which contains 21 poses combining
seven yaw angles (—45°, —30°, —15°, 0°, 15°, 30°, and 45°)
and three pitch angles (30°, 0°, and —30°). We use a subset
containing totally 4200 images of 200 subjects whose IDs range
from 401 to 600.

It is worth pointing out that, since we are mainly concerned
with the yaw estimation, all the images in the data set are
grouped according to the yaw regardless of the pitch. Therefore,
in this experiment, we have seven yaw classes in total. Thus,
for LDA, GFC, and GF?, the reduced dimension is six, which
is really low.

Table I shows the classification accuracies of different meth-
ods using the NC classifier with the Euclidean distance and
the cosine similarity. From the table, three observations can be
seen. First, the results of GaFour are the best in the unsuper-
vised methods except ICA2. Second, the GF® method yields the
best result among all the methods. Third, the results are similar
for the cosine and the Euclidean distances. Therefore, only the
Euclidean distance is used in the following experiments for
simplicity.

As to the NC classifier, since there are totally about
400(= 600/3 x 2) samples for each angle in the training set,
only one centroid cannot reflect sufficiently the distribution of
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TABLE 1
ACCURACY (IN PERCENT) OF POSE CLASSIFICATION ON THE CAS-PEAL DATABASE

Methods and Yaw Classification Correct Rates (%)
Distance PCA | ICA1 | ICA2 | LDA | Gabor | GFC | GaFour | GF3
Euclidean | 65.07 | 67.63 | 83.35 | 86.38 | 64.97 | 88.66 79.65 91.42
Cosine 64.51 | 67.34 | 83.66 | 86.35 | 6526 | 88.66 7943 91.01
95 results of face detection are shown in Fig. 8. In the experiment,
each angle in yaw is taken as one separate class, which means
QOE that there are totally 101 classes. Therefore, the dimension of
B LDA-based features will be not more than 100(= 101 — 1).
E Please also note that the threefold cross-validation evalua-
= ssa tion method similar to that on CAS-PEAL is also used here.
3\; Therefore, the persons in the training and testing sets are also
8 804 completely different.
g Since the yaw angles are nearly continuous in this data set,
< s unlike the accuracy used in CAS-PEAL experiment, we use the
error mean as the performance measurement. The error mean m
is computed based on the following equation:
70
1
K /
& 2 3 4 5 6 7 8 9 10 TN ; Ipi = pil ®
Number of centroids
Fig. 7. Accuracy on the CAS-PEAL database. The z-axis is the centroid where N is the total number of the testing samples, and p;

number of each pose, and the y-axis is the accuracy.

the samples. Therefore, for each angle, k-mean method is used
to find k centroids from the training samples, and then, the
NC classifier is used to predict the yaw class of the testing
samples. The accuracies with various k’s ranging from one to
ten are shown in Fig. 7. From this figure, it can be seen that the
accuracies of GaFour are among the best in the unsupervised
methods and that the accuracies of GF® are always the best
for all £’s. For the unsupervised methods, it can also be seen
that the accuracy increases with the increase of k when k is
very small. However, for the supervised methods, such as LDA,
GFC, and GF?, the accuracies are nearly equal for different ks,
which actually implies the excellent compactness of each class
in the feature space obtained by LDA.

2) Experiments on the Multipose Database: Another data-
base that we used is a private multipose database created by our-
selves. Unlike the CAS-PEAL database, the poses (particularly
in yaw) are almost continuous in the multipose database. The
database consists of 7731 images of 102 subjects taken under
normal indoor lighting conditions and fixed background with
a Sony EVI-D31 camera. The yaw and the pitch angles range
within [—90°,4+90°] and [—50°,450°] with intervals of 1°,
respectively. The number of images for each people is different
ranging from 22 to 142. To slightly reduce the complexity of
the experiment, a subset of the database is used, in which the
images are selected with the following rules: 1) the yaw angles
are limited in the range from —50° to 50°, and there are no
limitations for the pitch angles; 2) the sample number is 60
for each class (i.e., yaw angle); and 3) all the 102 subjects are
included in the subset, and the number of the images for each
subject is almost the same. Some images of one subject with the

and p) are the ground-truth and the predicted angles of the
ith sample, respectively. Thus, the unit of this measurement is
actually rotation degree in yaw.

As to the number of centroids for NC, considering that the
sample number is about 40(= 60/3 x 2) for each class/angle in
the training set, the maximal centroid number for each angle is
limited to seven, which is different from that in the experiment
on the CAS-PEAL database.

The error mean m against the number of centroids for NC of
different features is shown in Fig. 9. From the figure, it can be
seen that the results of GaFour are always better than the other
unsupervised methods and that the results of GF> are always
the best among all the methods for all £’s.

From the experiments on the two databases, we can draw the
conclusion that the asymmetry of GaFour features are indeed
effective to reflect the pose information and that its discriminant
ability can be improved further by combining with the LDA to
form the GF3,

3) Robustness for the Image Size: To test the robustness of
the methods to the image resolution, we repeat the experiments
with three different scales: 16 x 16, 32 x 32, and 64 x 64,
which are down sampling from the CAS-PEAL database. The
best accuracies for different features are shown in Table II with
k’s ranging from one to ten.

From Table II, we can draw three conclusions. First, for
all the image sizes, the results of GaFour are still the best
among the unsupervised methods. Second, for Gabor and GFC,
the accuracies are improved greatly when the image resolution
varies from low to high, whereas the accuracies of the other
method are not very sensitive to the change of the image sizes.
Thus, we guess that the suitable scales of 2-D Gabor filter
are very critical. Third, the accuracies of GaFour and GF3
are more robust to the image sizes. For GaFour and GF®, the
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Fig. 8. Face images of one subject in the multipose database.
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Fig. 9. Error mean on the multipose database. The z-axis is the centroid
number of each pose, and the y-axis is the error mean.

asymmetry features are computed from the row and can be seen
as the global information on the row while the details of the
images are only the supplement to the asymmetry. Based on the
characteristic of the robustness to the image sizes, we can use
the low-resolution image in pose estimation to reduce the time
and space requirement.

4) Distribution Analysis of Different Features: In pattern
classification, the most important thing for features is its sep-
arability for various classes (yaw in our case). To intuitively
show the effectiveness of GaFour and GF? for this purpose, the
following experiment is designed.

Images with 0° in pitch and with four angles in yaw, namely,
0°, —15°, —30°, and —45°, are considered. All the images
come from the CAS-PEAL database. Different features are
processed using PCA. For each PCA subspace, the leading

three dimensions are kept for visualization. Fig. 10 shows the
coordinates of the 800 testing images in the 3-D embedding
for different methods. In the figure, the filled circles, the filled
triangles, the filled diamonds, and the filled blocks are the
projections of the samples with yaw of 0°, —15°, —30°, and
—45°, respectively, in their own subspace.

From Fig. 10, it can be seen that the samples of four yaw
angles are separated in order in the embedding of GF?, while
points of different poses are heavily overlapped in the embed-
ding of other methods. This experiment shows that the separa-
bility of GF? is impressively better than the other methods.

5) Comparison With SVM: Since LDA is applied to extract
the discriminant features and reduce the data dimensionality, we
also compare it with the widely used SVM with/without LDA
dimensionality reduction. In SVM, radial basis function kernel
is used. Generally, SVM is used for two-class problems. We
use “one against one” approach to solve the c-class problem.
The results are shown in Table III.

From Table III, it can be known that on the CAS-PEAL
database, the 92.86% accuracy of GaFour+SVM is slightly
better than the 91.42% accuracy of GF> + NC. On the multi-
pose database, the 5.83° error mean of GaFour+-SVM is worse
than the 4.40° error mean of GF® + NC. The following reasons
explain our emphasis on GF? + NC.

First, the dimension of GF® is much lower than that of
the original GaFour, which can lead to much less storage
requirement and higher speed for memory access. The details of
the dimension analysis have been introduced in Section I'V-B.

Second, compared with the SVM, the computational cost of
the simple classifier combining LDA and NC is much less. This
advantage will become more evident when considered together
with the much lower dimension.

Third, to say the least, the main contribution of this paper
is proposing the asymmetry feature and its GaFour-based de-
scription for yaw estimation. Therefore, many other classifiers
can be applied for the sequential classification.
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TABLE 1II
MAXIMUM ACCURACY (IN PERCENT) OF THE DIFFERENT k’s WHEN THE IMAGE SIZE VARIES
Accuracy of different methods (%
Size PCA | ICA1 | ICA2 | LDA | Gabor | GFC | GaFour | GF3
16 x 16 | 79.94 | 8191 | 84.36 | 82.36 | 66.07 | 73.52 84.09 89.43
32x 32 | 81.04 | 80.69 | 8549 | 86.38 | 80.78 | 88.66 87.82 91.42
64 x 64 | 81.48 | 80.79 | 84.36 | 86.30 | 85.44 | 91.47 88.15 89.96
PCA ICA1 ICA2

LDA

Gabor

Fig. 10. Three-dimensional embedding of different features given by PCA. The filled circles, the filled triangles, the filled diamonds, and the filled blocks are

the projection of the samples with pose 0°, —15°, —30°, and —45°, respectively.

TABLE 1III
PERFORMANCE COMPARISON OF GF3 4+ NC AND GaFour+SVM
Database Measurement | GF34+NC | GaFour+SVM
CAS-PEAL Accuracy 91.42% 92.86%
Multi-Pose | Error Mean 4.40° 5.83°

B. Experiment 2: On Heterogeneous Training and Testing Sets

As we have mentioned, the experiments in Section V-A are
conducted on homogeneous training and testing sets. Easy to
understand, this kind of classification task is relatively easy;
therefore, as we have seen in the last section, the performances
of most methods are satisfactory. However, in practical applica-
tions, the situation might not be so perfect, i.e., the imaging
conditions of the testing images might not be homogeneous
with those of the training ones. We call this kind of situation
heterogeneous testing. Heterogeneous testing data are very
common in the real world, because system developers may
hardly know what kind of data will be presented to the system
in practical applications. Therefore, it is very significant to
evaluate a system by using some testing data heterogeneous
with the training data. Essentially, heterogeneous testing is
highly related to the generalizability problem in pattern recog-
nition. Aiming at this goal, the following experiments are
designed.

In this experiment, the multipose database is used as the
training data set, whereas the CAS-PEAL database is used as
the testing data set. The images in the multipose database are
captured by Sony EVI-D31 camera, whereas the images in the
CAS-PEAL database are captured by a simple USB camera.
Inevitably, the two databases are constructed with different
population under different imaging conditions, such as differ-
ent lighting conditions and backgrounds. Therefore, the two
databases are quite heterogeneous overall in terms of camera
parameters, population, lighting conditions, expressions, and
background, which are very appropriate for the aforementioned
purpose.

The error mean m of different methods with different &’s is
shown in Fig. 11. First, from the figure, one can surprisingly
find that the performances of various methods have become
quite different, which apparently forms contrast with the exper-
imental results in the aforementioned experiments. The error
mean of all the methods is larger than 7.0°, whereas the error
mean is not more than 5.6° in Section V-A2. The comparison
shows that the heterogeneous data affect the performances of
yaw estimation greatly. Second, we must point out that the
performance of LDA is much worse although it can get better
results when the training and testing data sets are homogeneous.
It seems that the discriminant ability of LDA is confused
by the nonpose information of the heterogeneous databases.
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heterogeneous. The z-axis is the centroid number of each angle, and the y-axis
is the error mean.

Finally, in this kind of evaluation, the results of GaFour and
GF? outperform all the other methods impressively although
they are just comparable to other methods in the aforemen-
tioned experiments. We attribute the superiority to the extracted
asymmetry features. Since the features in GaFour and GF?
are more related to pose variation, the effects caused by the
difference between the training and testing data are decreased
greatly.

Besides the error mean, the accuracies with the error toler-
ances are also important in pose estimation, which shows the
error distribution of samples. The accuracy As with the error
tolerance 9 can be computed as follows:

1N
A5 =D Ay (10)
i=1
where NV is the total number of testing samples, and
/ L |pi—pl<é
=< : 11
0yt { 0, otherwise. an

Intuitively, the accuracy is the correct rate when one accepts an
error less than § degree as the correct estimation. The As of
different methods is shown in Fig. 12. The figure shows that
the accuracies of GF® are always higher than those of other
methods with all the error tolerance §. For GF>, the accuracy
is about 44%, 76%, 92%, and 96% when the error tolerance
is 5°, 10°, 15°, and 20°, respectively, i.e., the estimation error
of 44% testing samples is less than 5° and the error of 96%
samples is less than 20°. For both GaFour and GF3, the accu-
racies approximate to 100% when ¢ is 40°. However, for the
other methods, the accuracies are not more than 94% when §
is 40°. The results further show that the error distribution of
GaFour and GF? is impressively much better than that of the
other methods.
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To sum up, these results strongly support the following
observations. The proposed method can better generalize to
the unseen heterogeneous data. It is also more robust than
the other benchmark methods when the data sets have more
variations in lighting, population, backgrounds, and cameras.
This further implies that the pattern representation based on
the image asymmetry is more heavily related to pose and thus
provides a good choice for yaw estimation.

Besides the effectiveness, the computation of GaFour and
GF? is also efficient. We compute the time needed for GaFour
and GF® using Matlab 7.0.4 on a PC (CPU Pentium IV at
3.4 GHz, 2-GB memory). The average computing time for
GaFour feature extraction of the 32 x 32 images is 3 ms,
and the time of classification using the NC classifier is about
0.08 ms, which indicates that our methods can be used in the
real-time system.

VI. DISCUSSION AND CONCLUSION

Based on the assumption that features for pose estimation
should be closely relevant to pose but less relevant to other
properties (e.g., the identity) of the face image, in this paper,
we proposed a novel face representation method based on the
asymmetry of the face image for head yaw estimation. We
show that the Fourier transform can provide good asymmetry
measures consistent with the pose variations; therefore, the
asymmetry feature is extracted as the resulting real and imag-
inary parts of Fourier transform of the input face image. In
order to eliminate the influence of lighting and noise, multiple-
scale 1-D Gabor filters are further exploited to filter the images
before Fourier transform. In addition, LDA is finally applied
to enhance the discriminant ability and reduce the feature
dimension. Extensive experimental results illustrate the advan-
tages of our method in robustness, effectiveness, efficiency,
and generalizability. In particular, in the heterogeneous testing,
the proposed methods impressively outperform the other well-
known methods.
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There are also several aspects to be further studied in the
future. First, this paper only discusses the effectiveness of
the asymmetry for estimating the yaw angles, but it is still
an open problem to extend the proposed method to estimate
simultaneously the yaw, pitch, and roll angles. Motivated by
the effectiveness of horizontal row signal for yaw estimation,
similarly, we might also expect good performance for pitch es-
timation based on vertical columns. We will validate this idea in
the future. Second, the dimension of the final GaFour feature is
still high even though it has been reduced; therefore, more work
should be done to further reduce the dimensionality. Finally,
it is also worth studying how to set the optimal parameters of
1-D Gabor filters for different rows in order to emphasize some
regions and further reduce the dimensionality.
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