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ABSTRACT 

Scalable Wyner-Ziv video coding is desirable, especially for mobile devices with limited computational resources and 

bandwidth. However, the conventional bit-plane representation used in hybrid video coding does not work well in the 

scenario of Wyner-Ziv coding. As we know, the bit-plane representation is closely related to the quantization. In this 

paper, a new bit-plane representation with optimal quantization at any bit-plane is proposed. In particular, for the DCT-

domain Wyner-Ziv video coding, since the distribution of DCT coefficients and the conditional distribution given side 

information can be modeled with symmetric Laplacian functions, a simplified adaptive bit-plane representation is 

proposed without pre-knowing the Laplacian distribution parameters. Based on the proposed bit-plane representation, a 

DCT-domain scalable Wyner-Ziv video coding scheme is proposed, in which the encoding and the bit-stream can be 

flexibly truncated according to the available computational resources and the bandwidth.  No coding performance loss is 

introduced due to truncation. 
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1. INTRODUCTION 

With the popularity of various portable multimedia devices, the demand of real-time visual communication over wireless 

networks is increasing rapidly. However, the processor workloads to process the video material become a bottleneck. 

Distributed video coding (DVC) is committed to the compression of video with limited computational resources [1]. 

Different from hybrid video coding for example H.264/MPEG-4 AVC (Advanced Video Coding) standard [2], DVC 

technologies encode the source and the side information separately. The mutual correlation is exploited at the decoder 

side, so the task of motion compensation is shifted to the decoder. A low-complexity encoder is thus achieved. 

The development of DVC technologies can be traced back to the Slepian-Wolf theorem [3] and the Wyner-Ziv theorem 

[4]. Slepian-Wolf theorem suggests that two correlated signals can be separately encoded with the same rate as that of 

joint encoding as long as the collaborative decoders are employed [3]. As for lossy compression, when the encoder does 

not know the side information, a bounded rate loss is incurred [4] [5]. In the past, a number of practical DVC 

technologies have been developed [6] ~ [10]. Similar to conventional video coding, temporal, spatial and statistical 

correlations are utilized in DVC. The temporal correlation in a video is usually utilized by generating the side 

information frame at the decoder with interpolation [1], hash-based motion estimation [6] or CRC-based motion 

estimation [7]. The spatial redundancy in a frame is removed by applying Wyner-Ziv coding into transform domains 

such as DCT [8] or wavelet [9]. Finally, the channel coding techniques such as turbo code [1], LDPC code [10] and 

syndrome coding [7] are used to exploit the statistical correlation. The Wyner-Ziv bit stream is robust to the packet or 

frame loss caused by channel transmission errors, since it is generated independently of the side information [1]. Thanks 

to the separate encoding, Wyner-Ziv coding has been adopted to compensate the mismatch between encoder and decoder 

existing in hybrid video coding. A layered video coder, which produces the base layer with hybrid video coding for 

example H.26L and the enhancement layer with Wyner-Ziv coding based on nested scalar quantization, is proposed in 

[11]. In [12], Wyner-Ziv coding is utilized to produce the switching stream for multiple bit-rate video streaming. 

*This work was done when M. Guo was with Microsoft Research Asia as a Research Intern. This work was supported by 

National Science Foundataion of China (60736043). 



 

 
 

 

Besides low complexity encoding, scalability is also desirable for Wyner-Ziv coding, especially for mobile devices with 

limited computational resources and bandwidth. When the computational resources are not enough, the encoder may stop 

at any coding status. Moreover, when the available bandwidth is not enough, the produced bit stream may also be cut to a 

certain length. In any case, it is desirable to have the optimal rate-distortion performance given a rate. 

Intuitively, bit-plane representation provides an inherent solution to scalable coding. However, the conventional bit-plane 

representation used in hybrid video coding does not work well in the scenario of scalable Wyner-Ziv coding. In hybrid 

video coding, the residue between source and side information is entropy coded directly, so the bit-plane representation  

could be designed to achieve optimum rate-distortion according to the distribution of quantized residue signal. In Wyner-

Ziv coding, the source signal is encoded individually but decoded depending on the side information and the mutual 

correlation. As we know, the bit-plane representation of source signal is closely related to the quantization. In [13], the 

optimal quantization of Wyner-Ziv coding has been studied for the general source, which shows that the quantization in 

Wyner-Ziv coding may not be identical to the joint coding. Therefore, in scalable Wyner-Ziv coding, the bit-plane 

representation should also be re-designed by considering the optimal quantization.  

In this paper, the bit-plane representation with optimal quantization at any bit-plane is considered in terms of scalable 

Wyner-Ziv coding. Actually, the bit-plane based coding is quite similar to the encoding with different quantization step 

sizes. The bit-plane representation should be associated with the partition method of quantization bins at each bit-plane. 

The bit-planes are adaptively produced according to the joint distribution of the source and the side information. A 

method which can achieve bit-plane representation with optimum quantization at any bit-plane is generally presented in 

terms of ideal Laplacian signal. For the DCT-domain Wyner-Ziv video coding, since the distribution of DCT 

coefficients in source frame and the distribution of difference between the source and the side information can be 

modeled as Laplacian functions, a simplified adaptive bit-plane representation is proposed without pre-knowing the 

distribution model parameters. Based on the proposed adaptive bit-plane representation, a scalable Wyner-Ziv video 

coding scheme is proposed, in which the encoding and the bit-stream can be truncated according to the available 

computational resources and the bandwidth. No coding performance loss is introduced due to the truncation. 

The rest of this paper is organized as follows. Section 2 analyzes the problem of traditional bit-plane representation and 

presents the proposed representation with optimal quantization for scalable Wyner-Ziv coding. Section 3 describes the 

proposed scalable Wyner-Ziv video coding. Section 4 gives some experimental results. Finally, this paper is concluded 

in Section 5. 

 

2. ADAPTIVE BIT-PLANE REPRESENTATION 
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Figure 1: Illustration of the traditional bit-plane representation. 

In this section, we will analyze the problem of traditional bit-plane representation at first. Then, a bit-plane 

representation to achieve optimum quantization at any bit-plane level is generally presented in terms of ideal Laplacian 



 

 
 

 

source signal. Particularly, for DCT-domain Wyner-Ziv video coding, a simplified adaptive bit-plane representation is 

proposed without the knowledge of distribution parameters.   

2.1 Analysis of Rate-Distortion Penalty with Traditional Bit-plane Representation 

After the uniform scalar quantization of zero-mean Gaussian or Laplacian signal, a sequence of quantization indices 

with signs is generated. We take the sign bit as an example to explain the rate penalty. In bit-plane based hybrid video 

coding, the residue between source and side information is directly entropy coded. The sign bit is put immediately before 

the first significant bit of the magnitude. However, in DVC, the source is encoded individually without knowing the side 

information. Since the decoder cannot identify the first significant bit of the magnititude with the bit-plane representation 

in hybrid coding, the encoder has to code the sign bits either before or after the coding of all other bit-planes, which is 

denoted as traditional bit-plane representation.  

Figure 1 shows a set of symbols with their traditional bit-plane representation. Let B0 represent the bit-plane of sign bits. 

The coding is performed in a top-down manner. For simplicity, we can analyze the rate penalty in terms of sign bits. 

When all bit-planes are encoded and transmitted, the rate-distortion performance will not change too much compared 

with the non-scalable coding. However, when the encoding is stopped or the bit-stream is truncated at a certain bit-plane 

(e.g., B2 in Figure 1), the transmitted sign bits contribute little to the distortion reduction but increase the rate, if the 

corresponding magnitudes are zero (e.g., symbols A, C, D and E in Figure 1). It should be noted that the sign bits will not 

be transmitted if these magnititudes are pre-quantized to zero at B2 in scalable Wyner-Ziv coding.         

2.2 Proposed Adaptive Bit-plane Representation 

The above example shows that traditional bit-plane representation results in rate-distortion penalty in scalable Wyner-Ziv 

coding. Actually, the bit-plane representation is closely related to the quantization. The bit-plane representation divides 

the range of source from 2 to 2
k
 bins when 2

k
 -level uniform pre-quantization is adopted. At each bit-plane level, the 

source is partitioned into uniform bins. The size of bin decreases from the most significant bit-plane to the least 

significant one. A bin achieved at a certain bit-plane Bt-1 will be halved at the next bit-plane Bt. In Wyner-Ziv coding, 

different ways can be used to divide one bin into two. The design of bit-plane representation should be associated with 

optimal quantization. Actually, it is unnecessary to make a bin at a certain bit-plane always cover a continuous range, 

because the final reconstruction is also determined with knowledge of side information. As depicted in Figure 2, one bin 

from a to b is divided into two bins with identical size. One is composed of [a, l) and [r, b) while the other one is [l, r). r 

which can be any value from (a+b)/2 to b, is specified in order to achieve optimum rate-distortion performance.  

a b
l ra+b

2
 

Figure 2: Bin partition at bit-plane level. 

Denote X as the source signal and Y as the side information. x and y are referred to as their elements at the same instant, 

respectively. Assuming X and Y are quantized in the same way, let Qx and Qy be the discrete variables of the quantized 

source signal and the quantized side information respectively. When the ideal coding in which the encoding bit rate can 

approach the entropy bound can be achieved, R denotes the needed bits for each element. In lossy coding, R is equal to 

the conditional entropy H(Qx|Y). The Wyner-Ziv decoder estimates the quantized version of the source signal based on 

the side information and their mutual correlation, which is always modeled as a Laplacian function in Wyner-Ziv video 

coding. If y is located at the same bin as x, the estimation is accurate and no Wyner-Ziv bits are needed. However, if x 

and y belong to different bins, Wyner-Ziv bits are required to be delivered for the purpose of correcting the errors at the 

decoder. Without loss of generality, a variable Vq is introduced and defined as follows 
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where qx and qy are the quantized elements x and y respectively. Thus, 
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P0 and P1 represent the probability that Vq takes the value of 0 and 1 as follows 

 0 ( )x yP P q q   and   1 ( )x yP P q q                                                          (3), 

Consequently, R can be minimized by maximizing P1, namely, the sum of probabilities that x and y are located in the 

identical bin. With regard to the distortion D, no matter which quantization method is utilized there exists D≈q
2
/12 when 

the source is encoded with high bit rate.  q denotes the quantization step size. While the source is encoded with low bit 

rate, the reconstructed value is achieved to minimize the distortion based on both the side information and the 

quantization bin. 

According to the above criteria, the optimum partition method can be derived from the joint distribution of the source 

signal and the side information. Here, we take the Laplacian signal as an example. Assume that both the distribution of 

side information Y and the conditional probability distribution of source X given Y have Laplacian functions, the 

parameters of which are uy and ue respectively. At a certain bitplane, the bin to be partitioned is [-N, +N]. Two bins with 

identical size are generated. One includes the single cell [-N+r, r), while the other one may contain two discontinuous 

cells [-N, -N+r) and [r, +N). Thus,  
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r, existing in [0, N), is determined by maximizing P1. Obviously, r relies on ue, uy and N. When ue = uy,  

1arg max( )
2

N
r P                                                                                     (5), 

which is illustrated in Figure 3(a). Otherwise, at several most significant bit-plane levels where N is large, the maximum 

P1 will appear at the point of N/2 as depicted in Figure 3(b). As N is decreased, the point at  N/2 will decline more rapidly 

than the point at zero as shown in Figure 3(c) and Figure 3(d).  

There are some other cases where the bin to be partitioned exist on the left or the right of the zero point, for example [a, 

a+2N] with a > 0 and [b-2N, b] with b < 0. We take the first case as an example. One of the two divided bins may be 

composed of two discontinuous cells [a, -N+r) and [r, a+2N) while the other one contains one single cell [-N+r, r). 

Hence, 
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      (6). 

r lies in [a+N, a+2N) and is specified by maximizing P1. Here, r relies on ue, uy, a and N. But the maximum P1 will 

always appear at the point of a+N, as illustrated in Figure 4. In a word, for the symmetric case, the partition at several 

most significant bit-plane levels should make the part around the zero point in one bin and two discontinuous parts on 

both sides in one bin. In the asymmetric case, each bin just needs to be partitioned at the middle point. 

            

(a) ue = uy = 0.1, N = 32                      (b) uy = 0.1, ue = 0.32, N = 32 

        

(c) uy = 0.1, ue = 0.32, N = 20                  (d) uy = 0.1, ue = 0.32, N = 12 

Figure 3: The selection of r to maximize P1 for symmetric case. 

 



 

 
 

 

     

(a) ue = uy = 0.1, a = 16, N = 16              (b) uy = 0.1, ue = 0.32, a = 16, N = 4 

                

(c) uy = 0.1, ue = 0.32, a = 16, N = 8            (d) uy = 0.1, ue = 0.32, a = 16, N = 16 

Figure 4: The selection of r to maximize P1 for asymmetric case. 
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Figure 5: Bit-plane representation: traditional bit-plane representation (left); proposed bit-plane representation(right). 

In Wyner-Ziv coding, the correlation is explored at the decoder. At each bit-plane level, the decoder estimates the 

partitioned bins of source signal based on the side information. The bit-plane representation should be consistent with the 

optimum partition method. The traditional bit-plane representation puts the sign bit at the most significant bit-plane as 

depicted in Figure 5. In this way, the range of the source is first partitioned at the middle point as shown in Figure 6(a). 

The most significant bit-plane, namely the sign bit, will distinguish positive symbols from negative ones. According to 

our previous discussion, the division at the middle point incurs larger rate compared to the division depicted in Figure 

6(b). Actually, with the statistical distribution parameters uy and ue, the optimum partition method can be calculated at 



 

 
 

 

each bit-plane level. Different bit-plane levels have different a and N. There are two choices for the bin around the zero 

point depending on N. At several most significant bit planes where the peak of P1 appears at the point of r equal to N/2, 

each symbol should be first distinguished as significant one or non-significant one, as depicted in Figure 6(b). Then, as 

shown in Figure 6(c), the significant set is further classified into positive significant set and negative significant set with 

the sign bit. And the non-significant set is partitioned recursively as illustrated in Figure 6(d). In top-down manner, as N 

decreases, the peak of P1 moves from the point of r equal to N/2 to the one of r equal to zero corresponding to Figure 3(c) 

and (d). At a certain bit-plane level Bk which has optimum r equal to zero, the non-significant set should be partitioned 

into positive set and negative set at the zero point in order to minimize rate. Accordingly, the sign bit should be located at 

bit-plane Bk, as illustrated in Figure 5. As for the positive and negative significant sets located on one side, they are 

divided in the middle.  
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                  (c)                                                   (d)           

Figure 6: The partition of the quantization bins. (a) B0 (traditional bit-plane representation);  (b) B0 (optimum); (c) B1 

(optimum); (d) B2 (optimum). Each filling pattern of line indicates one quantization bin.  

 

2.3 Simplified Adaptive Bit-plane Representation for Scalable Wyner-Ziv Video Coding  
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Figure 7: A simplified adaptive bit-plane representation. 



 

 
 

 

There are many other cases where the distribution of the side information is other than some general functions such as 

Laplacian or Gaussian, for example an image or a video frame in pixel domain. The maximum P1 may be achieved with 

different values of r depending on the joint distribution of the source and the side information. Besides the generated bit-

planes, some additional information that indicates the position of division needs to be delivered. When DCT transform is 

applied to an image or a frame from video data, the coefficients of side information always have Laplacian distribution 

[14]. In Wyner-Ziv video coding, the side information is not available at the encoder, so the conditional distribution 

cannot be known definitely. But the distribution of difference between source and side information can be modeled with 

a Laplacian function. We propose a simplified adaptive bit-plane representation for scalable Wyner-Ziv video coding. 

As illustrated in Figure 7, the first non-zero bit is shifted left by one bit and followed by the inserted sign bit.  

Given one coefficient, the sign bit will be encoded and transmitted after it is identified as a significant coefficient. If the 

encoding will stop at bit-plane Bt, only the sign bits of the coefficients that have been determined as significant ones with 

the bit-planes from B0 to Bt-1 are delivered. The coefficients that are just distinguished as significant ones at bit-plane Bt 

are still considered as non-significant ones, since there will be no chance to send the information of their signs. At the 

decoder, all the coefficients are assumed to be non-significant ones before decoding. After decoding one bit-plane, some 

coefficients are known to be significant ones. Their next bit-plane will indicate the sign information. The non-significant 

coefficients are still to be distinguished as significant ones or non-significant ones. After all the bit-planes are decoded, 

all non-zero quantized coefficients belong to the significant set.  

We take the second frame from News sequence at QCIF format as an example. The side information is generated by 

interpolating two neighboring reconstructed frames with the symmetric motion estimation algorithm. The quality of the 

side information in terms of PSNR is 32.07dB. Table 1 gives the probabilities that the coefficients of the source and the 

corresponding ones of the side information exist in the same bin. The conditional entropy H (B0, B1, …, Bt | Y) at each 

bit-plane level t is calculated as 

 
 0 1 0 1

0 1

1
( , , , | ) , , , , log

, , , ,
t t

t

H B B B Y P B B B y
P B B B y

 


                                     (7). 

It can be observed from Table 1 that larger P1 leads to less conditional entropy. Except B5, P1 achieved by the proposed 

bit-plane representation is larger than that achieved by the traditional manner. Hence, the bit rate is reduced. The overall 

coding efficiency will be shown in the Section 4. 

 

Table 1. P1 and H(B0, B1, …, Bt|Y) at each bit-plane level with two bit-plane representation methods. 

Bitplane 

     t 

Proposed Method Traditional Method 

P1 H P1 H 

0 0.9994 0.0016 0.9462 0.2586 

1 0.9977 0.0054 0.9456 0.2602 

2 0.9942 0.0141 0.9438 0.2643 

3 0.9803 0.0575 0.9386 0.2771 

4 0.9402 0.2329 0.9205 0.3289 

5 0.8346 0.6470 0.8788 0.5050 

6 0.7981 0.8156 0.7981 0.8156 

 

 

3. PROPOSED SCALABLE WYNER-ZIV VIDEO CODING 

Figure 8 shows the proposed scalable Wyner-Ziv video coding framework, which is similar to that in [1]. However, the 

proposed adaptive bit-plane representation is employed to enhance the coding efficiency. In each group of pictures 

(GOP), the first frame is compressed with intra coding. And other frames are Wyner-Ziv coded. We mainly focus on the 

Wyner-Ziv coding in this paper. After 4x4 DCT transform, the coefficients of the source frame X are scalar quantized 

into 2
k
 uniform bins with 2

k
-level quantizer. The bit-planes of the quantized coefficients I are arranged with our proposed 

representation, which has been introduced in the Section 2. The generated bit-planes denoted as B0, B1, … , Bk-1, are fed 

into turbo code based Slepian-Wolf encoder in top-down manner. Each bit-plane is encoded individually. The 



 

 
 

 

complexity controller informs the Slepian-Wolf encoder whether the encoding of the current bit-plane can be finished 

according to the available computational resources and/or the bandwidth. 
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Figure 8: Bit-plane based scalable Wyner-Ziv video coding. 

 

At the decoder side, the side information Y is created by interpolating the adjacent reconstructed frames with symmetric 

motion estimation. Although the generated side information may not be accurate in some non-linear areas, the Wyner-

Ziv bits will be used to compensate for the loss.  After the same 4x4 DCT transform, the coefficients of the side 

information are fed into Slepian-Wolf decoder in conjunction with the received Wyner-Ziv bits. The decoding of one bit-

plane is based on the judgement of posterior probability (PP). Given a possible value j equal to zero or one, PP is 

expressed as 

     1 ,
j

i i iPP s s s s


  
 

,                                                                          (8) 

where χj is the set of all transitions from state s' to s with the input j. The probability functions αi(s) and βi(s), which are 

the probabilities of approaching the state s at the instant i from the starting state and the ending state respectively, can be 

recursively calculated from the probability γi(s', s) as introduced in [15]. 

Given one bit-plane, the decoding exploits both the correlation with the side information and with the previously 

decoded bit-planes.  Assuming Bt  is currently being decoded, the transitional probability is represented as  

     0 1 1, | , , , , ( | )i i t i is s P j P j y B B B P u p 
  

,                                                        (9) 

where ui is the output parity bit of the transition from state s’ to s with the input j. yi and pi represent the corresponding 

side information and the received parity bit. The conditional probability P (j | yi, B0, B1, … , Bt-1) can be calculated 

numerically as the probability of the difference between the estimated coefficient and the side information. The 

distribution of difference can be well fitted by a Laplacian function. The estimated value of current coefficient is chosen 

from the bin which is specified by possible value j of current bit-plane together with the previously decoded bit-planes 

from B0 to Bt-1. The assignment of the partitioned bins at a certain bit-plane level relies on the bit-plane arrangement 

method.  

The decoded bit-planes are organized to restore the quantized coefficients I. The quantized coefficients and the side 

information are then used to reconstruct the coefficient X’ as E(X’|Y,I). After the inverse DCT transform, the source 

frame is reproduced at the decoder side. If only the Wyner-Ziv bits generated from the first few bit-planes are received, 

the reconstruction value will be selected in the specified bin with the knowledge of the side information. The distortion is 

bounded by the size of the partitioned bin achieved by the decoded bit-planes. 

4. EXPERIMENTAL RESULTS 

The proposed scalable Wyner-Ziv coding approach has been tested on a number of video sequences. The results of 

Foreman, Akiyo, News and Salesman (100 frames at QCIF format) are shown in Figure 9. We set the GOP structure as 

IWIW, and code the intra frames with H.264. Symmetric motion estimation is used to generate the side information 

frames. The same side information frames for each sequence are used to test the different coding schemes. The average 



 

 
 

 

PSNRs of side information frames for Foreman, Akiyo, News and Salesman are 29.30dB, 29.79dB, 29.90dB and 

29.48dB, respectively. Only the results of Wyner-Ziv frames are included in Figure 9.  

First, the non-scalable Wyner-Ziv coding with pre-quantization is evaluated. The curves of TRA_NO_TRUNC and 

PRO_NO_TRUNC indicate the coding with the traditional and the proposed bit-plane representation, respectively. The 

quantization step sizes are equal to 4, 8, 16 and 32 correspondingly. It can be observed that both schemes have similar 

reconstruction quality with the identical pre-quantization step size, but the proposed approach results in lower rate. In 

theory, the rates from the two approaches with the same pre-quantization step should be the same if ideal Slepian-Wolf 

coding can be performed. The superior performance of the proposed approach lies in that it improves the correlation 

between the source at each bit-plane and the side information.  

Then, the scalable Wyner-Ziv coding with bit-stream truncation is evaluated. Similarly, the curves of TRA_TRUNC and 

PRO_TRUNC indicate the coding with the traditional and the proposed bit-plane representation, respectively. The scalar 

uniform quantization step size equal to 4 is adopted. The performance, when 0, 1, 2, and 3 bit-planes are discarded due to 

limited resources, is given respectively. It can be observed that the performance of traditional bit-plane representation 

falls greatly when the truncation happens. Thanks to the proposed adaptive bit-plane representation, there is almost no 

rate-distortion penalty compared with non-scalable coding. There are many paths from the point achieved by the side 

information to the high bit rate end where all the bit-planes are encoded and transmitted to the decoder. It can be 

observed from Figure 9 that our scheme produces a better path compared to the scheme adopting the traditional bit-plane 

representation. In our scheme, when the truncation happens at the first several bit-plane levels, lower bit rate is used to 

correct the serious errors in the side information. In summary, the proposed bit-plane representation with optimal 

quantization at each bit-plane works well for both scalable and non- scalable Wyner-Ziv video coding.  

   

  
Figure 9: The coding performance of luminance component. 



 

 
 

 

5. CONCLUSIONS 

In this paper, we have proposed a scalable Wyner-Ziv video coding scheme with adaptive bit-plane representation. The 

encoding process or the bit-stream can be truncated at a certain bit-plane according to the available computational 

resources and/or the bandwidth. The optimal bit-plane representation is designed by considering the quantization issues 

in Wyner-Ziv video coding. For ideal source, the bit-plane representation can be determined with the distribution of side 

information and the conditional distribution of source given side information. Furthermore, a simplified method is 

proposed to be used in DCT-domain Wyner-Ziv video coding scheme.  
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