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ABSTRACT 
In this paper, we proposed a fast and robust unsupervised 
framework for anomaly detection and localization in crowed 
scenes. Our method avoids modeling the normal state of the 
crowds which is a very complex task due to the large within class 
variance of the normal target appearance and motion patterns. For 
each video frame, we extract the spatial temporal features of 3D 
blocks and generate the saliency map using a block-based center-
surround difference operator. Then, motion vector matrix is 
obtained by adaptive rood pattern search block-matching 
algorithm and distance normalization. Attractive motion disorder 
descriptor is proposed to measure the global intensity of 
anomalies in the scene.  Finally, we classify the frames into 
normal and anomalous ones by a binary classifier. In the 
experiments, we compared our method against several state-of-
the-art approaches on UCSD dataset which is a widely used 
anomaly detection and localization benchmark. As the only 
unsupervised approach, our method outputs competitive results 
with near real-time processing speed. 
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H.3.1 [Information Systems]: Content Analysis and Indexing; 
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Algorithms, Experimentation, Human Factors 
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1. INTRODUCTION 
As reviewed in [1, 2], monitoring surveillance videos, especially 
for videos of crowded scene, is a very expensive and tiring task. 
Thus, automatic detection of anomalous events in crowds has 
become an attractive topic in computer vision and pattern 
recognition research. Due to the unreliability of trajectory 
analysis in crowded scene [3], recent works focus on designing 
robust dynamic scene representations that avoid multiple targets 
tracking [4, 5, 6, 7, 8]. Adam et al. [4] maintain probabilities of 
optical flow in local regions, using histograms. Kim and Grauman 

[5] utilized a mixture of probabilistic PCA models to model local 
optical flow patterns, and enforce global consistency using a 
Markov Random Field (MRF). Inspired by classical studies of 
crowd behavior, Mehran et al. [6] characterized crowd behavior 
using concepts such as social force. These concepts lead to optic 
flow measurement of target interaction within the crowds, which 
are combined with a latent Dirichlet Allocation (LDA) model for 
anomaly detection. Mahadevan et al. [8] proposed a unified 
framework for joint modeling of appearance and dynamics of the 
scene, under which the outliers are labeled as anomalies. 

However, scene representation is not the only problem for 
anomaly detection task. Modeling the normal state of the 
crowded scene is another challenging problem due to the large 
within-class variance of the normal target appearance and motion 
patterns. Figure 1 shows the moving targets appeared in a 20 
seconds video clip, which contains different target appearances 
and movements. In real-world applications, the length of the 
video with normal crowd behaviors will be much longer than 20 
seconds, thus it’s nearly impossible to model the normal state 
containing thousands of patterns with different spatial temporal 
appearance. Compared with supervised or semi-supervised 
learning of the normal states [2, 3, 4, 5, 6, 7, 8, 9], it may be more 
practical to directly model the global intensity of anomalous 
events in a purely unsupervised manner.  

From experimental observations, we found that abnormal 
contents or unusual human behaviors will consistently attract the 
attention of human observers, which means most of the anomalies 
are more attractive or more salient compared with the other 
contents in the environment. Besides, the presence of anomalies 
will probably turn the ordered crowd movements into a 
disordered state. Based on these observations, we proposed an 
unsupervised framework for anomaly detection and localization 
task, which uses Attractive Motion Disorder descriptor to directly 
measure the overall intensity of anomalies and avoids modeling 
of the crowd’s normal behavior. Our descriptor is constructed by 
fusing the statistical features of visual saliency and motion 
vectors, which is inspired by both the perceptual and 
computational observations on normal and anomalous videos.  

*Area Chair: Kiyoharu Aizawa 
 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
MM’11, November 28-December 1, 2011, Scottsdale, Arizona, USA. 
Copyright 2011 ACM 978-1-4503-0616-4/11/11…$10.00. 

(a) Normal moving targets            (b) The crowed scene 

Figure 1. Large within-class variance of the normal target 
appearance and motion patterns in crowded scene. 
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2. METHOD 
The proposed unsupervised anomaly detection framework is shown 
in Figure 2. Temporal derivatives of spatial temporal video blocks 
are extracted as visual features. Saliency is then computed by 
block-based center-surround difference operator. Motion disorder is 
measured by the standard deviation of the motion vectors estimated 
by adaptive block-match algorithm. By analyzing the statistical 
distribution of visual saliency and the motion vector matrix, we 
construct attractive motion disorder descriptor to measure the 
global anomalous intensity, with which video frames are classified 
into normal or anomalous frames by a binary classifier. 
Localization of the detected anomalies is achieved using the spatial 
temporal saliency map. 
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Figure 2. The framework of the proposed method. 

2.1 Center-Surround Saliency Detection 
Saliency is an important concept for computational visual 
attention modeling, which could be quantitatively measured by 
center-surround difference [10, 11], information maximization 
[12], incremental coding length [13] and site entropy rate [14], 
etc. In our case, we first extract spatial-temporal local features 
from the video, then generate the saliency map using a block-
based center-surround operation, which is more computational 
efficient and shares the plausibility of previous works. The visual 
field is segmented into 24×32 3D sub-blocks represented by a 
gradient-based spatial-temporal descriptor. The descriptor of a 
sub-block is constructed by the absolute values of the temporal 
derivatives in all pixels in the block. These values are stacked 
into a 1-D feature vector. A center-surround difference operator, 
akin to the visual receptive fields of human vision system, is 
adopted as a quantitative measurement for visual saliency. In 
traditional models [10, 11], the center-surround difference was 
computed across different spatial scales using Difference of 
Gaussian filters. In our case, we only compute the difference 
between center block and its surrounding eight-neighborhoods for 
the concern of computation efficiency. The saliency of a given 
block is defined as the average center-surround difference 
measured by the Manhattan Distance between the features of the 
center and its surrounding blocks: 
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Figure 3 shows some examples of the spatial temporal saliency 
maps computed using the temporal gradient features and block-
based center-surround difference operator. It’s easy to notice that 
the anomalies tend to appear at the locations with the largest 
saliency value in the scene. 

  
Figure 3. Examples of the spatial temporal saliency maps. 

2.2 Attractive Motion Disorder Descriptor  
The motion vectors obtained by adaptive rood pattern search 
block-matching algorithm [15] are used as motion descriptors for 
each sub-block. The visual field is segmented into 12×16 sub-
blocks with equal size. Note that, motion vectors can also be 
directly obtained from the compression domain data if the video 
is compressed using motion compensation technique. Let Mi,j 
denote the motion vector of the sub-block in ith row and jth 
column, we apply distance normalization to eliminate the scale 
variance of the motion vector caused by the geometrical setting of 
the camera: 
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where M is the motion vector matrix, H is the height of M, 
0.5  is a distance compensation parameter which has been  

fixed in our experiment. After normalization, object moments 
appeared in all sub-blocks can be near equally measured by M’.  
Figure 4 illustrates motion estimation and normalization results. 

 

Figure 4. Motion estimation. From left to right: input video 
frame, motion estimation result by adaptive rood pattern 
search block-matching [15] and normalized motion vectors. 

There are various measurements for system disorder such as 
Entropy and Standard Deviation. Entropy is an important concept 
in physics and information theory, which is also widely used as a 
quantitative measurement for uncertainty or unpredictability. 
Standard Deviation is an easy to compute statistical feature 
describing the variance or diversity of a group of data. Practically, 
we use standard deviation to measure the motion disorder, 
because it leads to a better overall performance while costing 
much less computations compared with other measurements. 
Given the spatial temporal saliency map S, the motion vector 
matrix M’, we define the Attractive Motion Disorder (AMD) 
descriptor A by: 

max( ) (1 ) std( ')A S M      ,                   (3) 

where [0,1]   is a fusing parameter, std(.) denotes the 
standard deviation of the input matrix.  The descriptor can be 
regarded as a quantitative measurement for global intensity of all 
the anomalous events appeared in the visual field. Higher value 
for the AMD descriptor indicates larger probability for the 
appearance of anomalies. Figure 5 illustrate the distribution of 
AMD descriptor ( 0.5  ) in normal and anomalous videos.  
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Figure 5. Distribution of AMD descriptor in normal (blue) 
and anomalous (green) video frames of UCSD Ped_1 dataset.  

2.3 Anomaly Detection and Localization  
Video frames can be classified into normal or abnormal frames 
by a binary classifier using the AMD descriptor. As described in 
Section 1, anomalous regions tend to attract more visual attention 
compared with the other events happened in the scene. Thus, 
saliency map can be used as a reference for localization and 
segmentation of the anomalous regions. In practice, we adopt 
Equation 4 to segment the anomalies, which is first proposed in 
[16] for non-parametric proto-object segmentation. 
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where O is the localization binary map, S’ = SG is a refined 
saliency map smoothed by a Gaussian filter G (3×3, 1  ). We 
set the threshold to be 7×E(S) empirically, where E(S) is the 
mean intensity of the saliency map. Examples of anomaly 
detection and localization results are shown in Figure 6.  

 
Figure 6. Anomaly detection in crowded videos. From left to 
right: Detected abnormal frame, corresponding saliency map 
and localization result of the anomalous region. 

3. EXPERIMENTS 
We evaluate the proposed approach on UCSD dataset [8]1, which 
is a well annotated publicly available dataset for the evaluation of 
abnormal detection and localization in crowded scenes. The 
dataset was acquired with a stationary camera mounted at an 
elevation at a resolution of 238 × 158 with 10 fps, overlooking 
pedestrian walkways. The circulation of non pedestrian entities in 
the walkways, and anomalous pedestrian motion patterns are 
regarded as abnormal events. Commonly appeared anomalies 
include bikers, skaters, small carts, and people walking across a 
walkway or in the grass. Videos were split into 2 subsets: Ped_1 
and Ped_2, each corresponding to a different scene. Videos 
recorded from each scene were split into various clips each of 
which has around 200 frames. Ped_1 contains 34 training clips 

                                                                 
1 http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm   

and 36 testing clips, while Ped2 contains 16 training clips and 14 
testing clips. For each clip, the ground truth annotation includes a 
binary flag per frame, indicating whether an anomaly is present in 
that frame.  

Practically, all video frames are resized to 120×160 in order to 
reduce the computation cost. For each frame, we extract the 
spatial temporal features of 5×5×3 3D video blocks, and generate 
a 24×32 saliency map using the proposed block-based center-
surround difference operator. A 12×16 motion vector matrix is 
then obtained based on adaptive rood pattern search block-
matching algorithm and distance normalization.  Based on the 
saliency map and the motion vector matrix, we compute the 
AMD descriptor using Equation 3 ( 0.5  ), which is proposed 
to describe the overall intensity of anomalies appeared in the 
frame. Finally, the video frame is classified into normal or 
anomalous frame by a binary classifier.  

The evaluation on UCSD dataset contains two components: 
anomaly detection and localization. By varying the parameters of 
the tested approach, an ROC curve can be drawn to intuitively 
evaluate the anomaly detection performance. Figure 7 illustrates 
the ROC curves for UCSD dataset of various state-of-the-art 
approaches and our approach, while Figure 8 shows some visual 
examples of anomaly localization and segmentation results of the 
tested approaches.  In addition to Figure 7, Table 1 shows the 
area under ROC curve (AUC) of the tested methods, in which a 
larger AUC score means better classification performance. 
According to the experimental results, our method, as the only 
completely unsupervised training-free approach, outputs 
competitive results against the state-of-the-art methods with near 
real-time processing speed. Visual results indicate that our 
method is able to accurately localize the anomalous events in the 
crowded scene and outputs better segmentation results with well 
defined boundaries. 

 

Figure 7. ROC curves of tested approaches on UCSD Ped_1 
dataset. Tested approaches include our method, MDT-based 
approach [8], the Social Force Model [6], the mixture of 
optical flow (denoted as MPPCA [5]) and optical flow 
monitoring method (Adam et al. [4]).  

Table 1. Area Under ROC Curves 

Method MDT SF MPPCA Adam  Ours 

AUC 0.7895 0.7413 0.6554 0.6350 0.7919 
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4. CONCLUSION 
In this paper, we proposed an unsupervised framework for fast 
anomaly detection and localization in crowded scene. Instead of 
modeling the normal states, we directly model the intensity of 
anomalies using attractive motion disorder descriptor, which is 
constructed by fusing the statistical features of saliency map and 
motion vector matrix. Saliency detection and motion estimation 
are conducted by block-based center-surround difference operator 
and adaptive rood pattern search block-matching algorithm, both 
of which are highly efficient and lead to a near real-time overall 
processing speed. Experimental results on a widely used bench-
mark dataset demonstrate the effectiveness of the proposed 
framework. Our future work lies in integrating other reliable 
features, such as location distribution prior, into the framework to 
further improve the overall performance. 
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Figure 8. Comparisons of abnormal localization results from (i) our approach; (ii) MDT approach and (iii) SF-MPPCA approach. 
The results of MDT and SF-MPPCA are provided by Mahadevan et al. [8]
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