Turkish Journal	Turkish Journal of Electrical Engineering & Computer Sciences
of	Differentiating Type of Muscle Movement via AR Modeling and Neural Network Classification
Electrical Engineering & Computer Sciences	Bekir KARLIK Department of Electrical and Electronic Engineering, University of Celal Bayar, Manisa-TURKEY
Keywords Authors	<u>Abstract:</u> The aim of this study is to classify electromyogram (EMG) signals for controlling multifunction proshetic devices. An artificial neural network (ANN) implementation was used for this purpose. Autoregressive (AR) parameters of a_1 , a_2 , a_3 , a_4 and their signal power obtained from different arm
	muscle motions were applied to the input of ANN, which is a multilayer perceptron. At the output layer, for 5000 iterations, six movements were distinguished at a high accuracy of 97.6%.
0	Key Words: Myoelectric signals, artificial neural networks, classification
elektrik@tubitak.gov.tr	Turk. J. Elec. Eng. & Comp. Sci., 7 , (1999), 45-52. Full text: pdf
Scientific Journals Home Page	Other articles published in the same issue: <u>Turk. J. Elec. Eng. & Comp. Sci.,vol.7,iss.1-3</u> .